
Lecture 26: Pfaffians and the Euler class.
Gauss-Bonnet-Chern Theorem.

1. Euler characteristic

Let M be a smooth, compact manifold. A theorem of Whitehead says that
any such M can be given a triangulation—that is, any such M can be given
a homeomorphism K → M from a simplicial complex K. Let Ki denote the
number of i-simplices in K. This is necessarily finite since M is compact.

Definition 26.1. The Euler characteristic of M is the integer

χ(M) :=
dimM�

i=0

(−1)iKi.

What is non-trivial is that this is a number which remains the same under
different triangulations.

2. Gauss-Bonnet-Chern Theorem

I will define the Euler class momentarily.

Theorem 26.2 (Gauss-Bonnet-Chern Theorem). Let M be an smooth man-
ifold which is

(1) oriented,
(2) dimension 2k (so it’s even-dimensional), and
(3) compact.

Let e(M) ∈ H2k
dR
(M) be the Euler class associated to the tangent bundle of

M , together with its orientation. Then
�

M

e(M) = χ(M).

Remark 26.3. What do I mean by integrating a cohomology class over a
smooth manifold? We know what it means to integrate a differential form.
Well, let α, α� be two forms of degree 2k in the same cohomology class. (They
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are automatically closed because Ω2k+1
dR

(M) = 0.) This means there is some
2k − 1 form, β, such that dβ = α− α�. Then Stokes’s Theorem tells us that

�

M

α− α� =

�

M

dβ =

�

∅
β = 0.

So
�
M
α =

�
M
α�, so the integral is dependent only on the cohomology class of

α.

Remark 26.4. You might be frustrated by all the requirements in the theo-
rem. For instance, why does M have to be even-dimensional? Well, there are
two related ideas: First, it turns out that for any compact, orientable man-
ifold of odd dimension, the Euler characteristic is always zero. So the Euler
characteristic is not an interesting invariant of odd-dimensional manifolds to
begin with. Second, the Euler class in given in terms of the Pfaffian, which
only exists in even-dimensional vector spaces.

Remark 26.5. You probably know that Gauss-Bonnet Theorem as some-
thing about integrating curvature over a 2-manifold to recover the Euler char-
acteristic. We’ll see the relationship later next week.

3. The Pfaffian

Let X be a 2k×2k matrix and assume it is skew-symmetric, so XT = −X.

Definition 26.6. The Pfaffian is the polynomial

Pf =
1

2kk!

�

σ∈S2k

xσ(1)σ(2) . . . xσ(2k−1)σ(2k)

where the variable xij corresponds to the i, j entry of a matrix. The Pfaffian

of X, Pf(X), is the number given by evaluating the polynomial on X.
The following Lemma is non-trivial, but we won’t prove it.

Lemma 26.7. For any skew-symmetric, even-dimensional matrix X, the
following holds:

(1) Pf(X)2 = det(X).
(2) For any invertible matrix A,

Pf(AXA−1) = det(A)Pf(X).

Example 26.8. Let k = 1. Then any skew-symmetric matrix is of the form
�

0 x12

x21 0

�
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where x12 = −x21. Then the Pfaffian is given by

Pf(X) + (
1

21 · 1!)(x12 − x21) = x12.

And indeed,
Pf(X)2 = x2

12 = det(X).

4. The Euler form and Euler class

The game we played with characteristic classes is the following: Curvature
looks a certain way locally, and we saw that it transformed by conjugation.
So if we can construct an invariant polynomial, then that polynomial turns
the curvature form (which is a 2-form with values in End(E)) into a globally
defined differential form (with values in R, as opposed to End(E)).

We want to play the same game with the Pfaffian, but there are a few
issues:

(1) The Pfaffian is only defined for even-dimensional vector spaces, so the
vector bundle had better be even rank.

(2) Second, the Pfaffian satisfies a nice property—namely, it’s a square
root for the determinant—but this only holds for skew-symmetric ma-
trices, so we need to be able to guarantee a situation in which the
curavture form is skew-symmetric. Well, we know how to do that:
Impose a metric. (This was part of your homework.) To be specific,
fixing a metric, there exists an orthonormal basis around any point, so
we can choose trivializing neighborhoods and trivializations for which
the curvature form is skew-symmetric.

(3) Lastly, the Pfaffian isn’t an invariant polynomial. If gαβ is a transition
matrix from one trivialization to another, the metric only guarantees
that gαβ is a function into O(n). (After all, a trivialization respecting
the metric has to send one orthonormal basis to another.) So there
is a sign ambiguity in the Pfaffian when we change trivializations.
To get rid of this ambiguity, we should find a situation in which we
can guarantee that each gαβ lands not in O(n), but in SO(n). Well,
we can do that if we can guarantee that each orthonormal basis is
compatible with an orientation on E.

Definition 26.9. An orientation on a vector bundle E is a nowhere vanishing
section of ΛdimEE. Or, equivalently, a nowhere vanishing section of ΛdimEE∗.
(The two are isomorphic by choosing a Riemannian metric.)

Definition 26.10. Let E be an oriented vector bundle of rank 2k. Fix a
metric g and a compatible connection ∇. By the discussion above, the form
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Pf(Ω∇) is a globally defined differential form of degree 2k. The Euler form is
defined to be

eu(E, g,∇) =
1

(2π)k
Pf(Ω∇).

We again do not prove the following lemma, but it is the natural result to
pursue if inspired by other characteristic classes.

Lemma 26.11. The Euler form is closed for any choice of g,∇, and its
cohomology class is unchanged by changing g or ∇.

Definition 26.12. The Euler class of an oriented vector bundle is

e(E) := [eu(E, g,∇)] ∈ H2k
dR
(M).

For an oriented manifold M , we write e(M) = e(TM).

5. Geometric interpretation of Euler class via Poincaré Duality

There’s a very satisfying geometric interpretation of the Euler class. Let
E be an oriented vector bundle over an oriented manifold M . I claim that
since E is oriented as a vector bundle, and since M is oriented, the manifold

E is oriented as well. Thus it makes sense to talk about oriented intersections
inside of E.

Let s : M → E be a section. By Sard’s Theorem, we can assume it is
generic—i.e., that s is transverse to the zero section i : M → E. Then by
transversality, s(M)∩ i(M) is a smooth submanifold of E. Since it is a subset
set of the zero section i(M), one can also think of it as a smooth submanifold
of M .

Now, Poincaré Duality tells you there is a duality between smooth sub-
manifolds of M and deRham cohomology classes of M . A rough picture is as
follows: A differential k-form is something that you can integrate over smooth
manifolds, so it’s a way of taking a smooth k-dimensional manifold and spit-
ting out a number. What’s a systematic way of doing such a thing? Take a
codimension k submanifold of M , and compute its intersection number against
a k-dimensional submanifold.

(We haven’t talked about Poincaré Duality yet, so it’s okay if this is unfa-
miliar.)

The Euler class is then the Poincaré dual to the intersection s(M)∩ i(M).
Let’s do a quick dimension count: By transversality, the intersection s(M) ∩
i(M) must be of dimension M−rank(E). That is, it is a codimension rank(E)
submanifold of M . Poincaré Duality assigns to it a degree rank(E) = 2k
cohomology class, and indeed this is the degree of the Euler class.
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Example 26.13. If E = TM , then the intersection s(M)∩ i(M) of a generic
section with the zero section is some collection of points. If M is compact, this
set is finite, and if M is oriented, we can count this intersection number. The
intersection number—according to the Gauss-Bonnet-Chern Theorem—is the
Euler characteristic of M .
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