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1. 2015-9-1

Based on the two people who have filled out the survey so far (fill
it out!), it seems we are collectively uncomfortable with some basic
objects that are relevant. So we will stick with the basics for the first
half of today.

The first half of this course will give three good easy examples of
mirror symmetry.

Let’s start the math.

1.1. Basics. Let M be a C'*° manifold of dimension 2n. A symplectic
form on M is a choice of closed form w € Q3 (M,R) such that w"
defines a volume form. A pair (M,w) is called a symplectic manifold.

Remark. w defines an isomorphism w : I'(T'M) — T'(T*M) given by
applying w to the tangent vector. This has an analogue in physics,
where given a function H on a manifold, we want to compute alter-
nately dH or its associated vector field X HEI

Examples of symplectic manifolds include points, arguably the empty
set depending on what we consider its dimension to be, and also nonsilly
things. R? with whatever nonzero constant choice of 2-form works,
for instance. M = R®n has 2-forms >, dx; A dy;. Any orientable 2-
manifold works for obvious reasons. Perhaps most interestingly, we
have, for any smooth manifold (), that the cotangent bundle T*Q)—
on which we have the canonical 1-form (the Liouville form) given by
0(v)(gper-g = p(dm(v))—has the symplectic form df.

Exercise 1.1. Verify that (7T*Q, df) is a symplectic manifold.

IThe significance of this statement in physics is unclear to Geoff; he apologizes
for the lack of context
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A final example is a Kahler manifold, for which the imaginary part
of the hermitian metric is symplectic.

Now, call a submanifold L. C M of the symplectic manifold M a
Lagrangian if dim L = %dimM and w|;, = 0. This object seems ar-
tificially defined to us at first glance, but we have the following nice
theorem indicating a potential for deeper significance.

Theorem 1.2 (Gromov). We have the following.

o InR>™ with a usual symplectic structure, any compact Lagrangian
has Hig(L,R) # 0.

o There exist symplectic structures on R®*™ such that S™ C R?n is
a Lagrangian.

An almost complex structure on a manifold M is a endomorphism J
of TM such that J? = —1. J is called compatible with w if w(e, Je)
is a Riemannian metric. A smooth map w : (M,J) — (M',J') is
called (J, J')-holomorphic if du o J = J' o du. For instance, if these
are complex manifolds, the J, J’-holomorphic maps are precisely the
holomorphic maps.

1.2. Toward Fukaya categories. This will be nonrigorous! Feel the
demand for rigor churn in your stomach, and deal with it somewhere
else.

Fix Lagrangians Ly,... of M, and assume L;, L; intersect simply
transversally. We play a fun game. This game is called Morse theory.

Fix some component P, C P, fix a basepoint 79 € F,. Then for
all paths v € F,, we have some path from 7, to v, that is, a function
w:[0,1] x[0,1] — M, so we can take the number A(y) = f[o,l]x[o,l] urw.
Then the rate of change of A is independent of 7y and of u itself (w is
closed!). We do Morse theory with dA. This will be our basic function.
Because Morse theory needs it apparently, we also need a metric on F,
but we can abduct it from a metric on M by integrating the length of
the perturbation of the path over the path. So now we need a metric
on M, which we get by choosing an almost complex structure J and
setting g = w(e, Je).

The following lemma is more difficult than it looks because infinite
dimensional analysis is not easy.

Lemma 1.3 (Floer). dA(vy) = 0 iff v is a constant path. So the set of
critical points of A are in bijection with points L; N Lj;.

The gradient trajectories are maps u : R x [0,1] — M such that
ulrxfoy C Li, ulrxqny C Ly, lim_c u(e, s) = p € L;NL;, lim_,_ u(e, s) =
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q € L;NL;, and u is (i,J)-holomorphic treating R x [0,1] as a subset
of C.

Geoff left the lecture here, with a few minutes left in the class. Ap-
parently there will be other notes, and he recommends looking at those.



