
LECTURE 1

Toward the Fukaya category

Some remarks: (I.e., things I said out loud that did not make it to the
board)

(1) I’ll start basic; the facts I’ll assert about Fukaya categories probably
don’t seem so impressive or appreciable until we have some basic facts
and examples under our belts. So before asserting such facts, I want
to set up the basic ideas. The goal is to start playing with games
in a symplectic manifold, and asking what kinds of structures it has
algebraically. We’ll start seeing an algebraic structure, and the name
we’ll give to this structure is that of an A∞ category.

(2) The condition that dω = 0 is the analogue of the integrability condi-
tion for holomorphic manifolds. The rigidity phenomena that you’re
familiar with from complex geometry have analogues in the symplec-
tic world, and they are mostly due to this closedness condition. As
a dumb example, when you want to compute the Lie derivative of a
symplectic form, you’d use the Cartan formula. Then you see that
one of the terms goes away immediately.

(3) Symplectic geometry really comes from classical mechanics. There,
you learn that a single Hamiltonian called H, which encodes energy,
completely determines your dynamical system. (I.e., how your states
evolve.) Well, if you imagine that M is your phase space, then any H

determines a vector field on M : Just take its derivative, then use the
symplectic form to turn it into a vector field. The flow of this vector
field is precisely the evolution of the dynamical system encoded by H.

(4) The J being compatible with ω is another instance of the 2-out-of-3
idea you’ve probably seen in Kahler geometry. Of Riemannian, sym-
plectic, and complex structures, any two determine the third. The
reason that compatibility is so useful for us is that, even if J is not
integrable (hence even though J does not define a holomorphic struc-
ture) we can still hope for some sort of rigidity in the analysis of
holomorphic maps into M . This compatibility with ω, and the rigid-
ity from dω = 0, is responsible for the rigidity you’ll see.
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(5) There are serious analytical difficulties and subtleties in even talking
about proper notions of tangent spaces to infinite-dimensional man-
ifolds. So all the ideas and results in this lectures are things you
can do using back of the napkin computations, but things you might
not know how to formally define as a gradient flow on an infinite-
dimensional manifold, or as tangent spaces to an infinite-dimensional
manifold. But I promised that even without setting up such formal-
ities for rigorous proof, you could go home and discover this Lemma
on your own. So you’d know what you’d want your formal set-up to
recover, but you will have to do work to make your napkin computa-
tions into real papers. An example is that the tangent space to γ ∈ P
is given by the vector space of tangent vector fields to γ. That is, a
tangent vector to γ is just a vector field along γ; heuristically, this is
the thing that tells you how to “nudge” or “deform” γ. Given two
such vector fields, we know how to get a number out of them if we
have a Riemannian metric on M itself: You take the inner product at
every point of γ, then integrate the resulting function. That is, the
Riemannian metric on P is defined by

(0.1) �X, Y � =
�
�X(γ(t)), Y (γ(t))�dt.

(6) If V ⊂ C is open and u : V → (M,ω, J) is holomorphic, what does�
V u

∗
ω = 0 imply?
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