LECTURE 1

Toward the Fukaya category

Some remarks: (Le., things I said out loud that did not make it to the

board)

(1)

I'll start basic; the facts I'll assert about Fukaya categories probably
don’t seem so impressive or appreciable until we have some basic facts
and examples under our belts. So before asserting such facts, I want
to set up the basic ideas. The goal is to start playing with games
in a symplectic manifold, and asking what kinds of structures it has
algebraically. We'll start seeing an algebraic structure, and the name
we’ll give to this structure is that of an A, category.

The condition that dw = 0 is the analogue of the integrability condi-
tion for holomorphic manifolds. The rigidity phenomena that you're
familiar with from complex geometry have analogues in the symplec-
tic world, and they are mostly due to this closedness condition. As
a dumb example, when you want to compute the Lie derivative of a
symplectic form, you’d use the Cartan formula. Then you see that
one of the terms goes away immediately.

Symplectic geometry really comes from classical mechanics. There,
you learn that a single Hamiltonian called H, which encodes energy,
completely determines your dynamical system. (I.e., how your states
evolve.) Well, if you imagine that M is your phase space, then any H
determines a vector field on M: Just take its derivative, then use the
symplectic form to turn it into a vector field. The flow of this vector
field is precisely the evolution of the dynamical system encoded by H.
The J being compatible with w is another instance of the 2-out-of-3
idea you've probably seen in Kahler geometry. Of Riemannian, sym-
plectic, and complex structures, any two determine the third. The
reason that compatibility is so useful for us is that, even if J is not
integrable (hence even though J does not define a holomorphic struc-
ture) we can still hope for some sort of rigidity in the analysis of
holomorphic maps into M. This compatibility with w, and the rigid-
ity from dw = 0, is responsible for the rigidity you’ll see.
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(0.1)

(5) There are serious analytical difficulties and subtleties in even talking

about proper notions of tangent spaces to infinite-dimensional man-
ifolds. So all the ideas and results in this lectures are things you
can do using back of the napkin computations, but things you might
not know how to formally define as a gradient flow on an infinite-
dimensional manifold, or as tangent spaces to an infinite-dimensional
manifold. But I promised that even without setting up such formal-
ities for rigorous proof, you could go home and discover this Lemma
on your own. So you'd know what you’d want your formal set-up to
recover, but you will have to do work to make your napkin computa-
tions into real papers. An example is that the tangent space to v € P
is given by the vector space of tangent vector fields to v. That is, a
tangent vector to « is just a vector field along ~; heuristically, this is
the thing that tells you how to “nudge” or “deform” ~. Given two
such vector fields, we know how to get a number out of them if we
have a Riemannian metric on M itself: You take the inner product at
every point of ~, then integrate the resulting function. That is, the
Riemannian metric on P is defined by

(X,Y) = / (X(4(1)). Y (+(£)) ).

(6) If V. Cisopen and u : V — (M,w,J) is holomorphic, what does

[, w*w = 0 imply?



