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HIRO LEE TANAKA
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1. 2015-9-1

Based on the two people who have filled out the survey so far (fill
it out!), it seems we are collectively uncomfortable with some basic
objects that are relevant. So we will stick with the basics for the first
half of today.

The first half of this course will give three good easy examples of
mirror symmetry.

Let’s start the math.

1.1. Basics. Let M be a C∞ manifold of dimension 2n. A symplectic
form on M is a choice of closed form ω ∈ Ω2

dR(M,R) such that ωn

defines a volume form. A pair (M,ω) is called a symplectic manifold.

Remark. ω defines an isomorphism ω : Γ(TM) → Γ(T ∗M) given by
applying ω to the tangent vector. This has an analogue in physics,
where given a energy function H on a manifold, we may want to com-
pute alternately dH or its associated vector field XH .

Examples of symplectic manifolds include points, arguably the empty
set depending on what we consider its dimension to be, and also nonsilly
things. R2 with whatever nonzero constant choice of 2-form works,
for instance. M = R2n has 2-forms

∑
i dxi ∧ dyi. Any orientable 2-

manifold works for obvious reasons. Perhaps most interestingly, we
have, for any smooth manifold Q, that the cotangent bundle T ∗Q—
on which we have the canonical 1-form (the Liouville form) given by
θ(v)(q,p)∈T ∗Q = p(dπ(v))—has the symplectic form dθ.

Exercise 1.1. Verify that (T ∗Q, dθ) is a symplectic manifold.

A final example is a Kähler manifold, for which the imaginary part
of the hermitian metric is symplectic.

Now, call a submanifold L ⊂ M of the symplectic manifold M a
Lagrangian if dimL = 1

2
dimM and ω|L = 0. This object seems ar-

tificially defined to us at first glance, but we have the following nice
theorem indicating a potential for deeper significance.
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Theorem 1.2 (Gromov). We have the following.

• In R2n with a usual symplectic structure, any compact Lagrangian
has H1

dR(L,R) 6= 0.
• There exist symplectic structures on R2n such that Sn ⊂ R2n is

a Lagrangian.

An almost complex structure on a manifold M is a endomorphism J
of TM such that J2 = −1. J is called compatible with ω if ω(•, J•)
is a Riemannian metric. A smooth map u : (M,J) → (M ′, J ′) is
called (J, J ′)-holomorphic if du ◦ J = J ′ ◦ du. For instance, if these
are complex manifolds, the J, J ′-holomorphic maps are precisely the
holomorphic maps.

1.2. Toward Fukaya categories. This will be nonrigorous! Feel the
demand for rigor churn in your stomach, and deal with it somewhere
else.

Fix Lagrangians L0, . . . of M , and assume Li, Lj intersect simply
transversally. We play a fun game. This game is called Morse theory.
Set P (Li, Lj) = {γ : [0, 1]→M |γ(0) ∈ Li, γ(1) ∈ Lj}.

Fix some component P0 ⊆ P , fix a basepoint γ0 ∈ P0. Then for
all paths γ ∈ P0, we have some path from γ0 to γ, that is, a function
u : [0, 1]× [0, 1]→M , so we can take the number A(γ) =

∫
[0,1]×[0,1] u

∗ω.

Then the rate of change of A is independent of γ0 and of u itself (ω is
closed!). We do Morse theory with dA. This will be our basic function.
Because Morse theory needs it apparently, we also need a metric on P0,
but we can abduct it from a metric on M by integrating the length of
the perturbation of the path over the path. So now we need a metric
on M , which we get by choosing an almost complex structure J and
setting g = ω(•, J•).

The following lemma is more difficult than it looks because infinite
dimensional analysis is not easy.

Lemma 1.3 (Floer). dA(γ) = 0 iff γ is a constant path. So the set of
critical points of A are in bijection with points Li ∩ Lj.

The gradient trajectories are maps u : R × [0, 1] → M such that
u|R×{0} ⊂ Li, u|R×{1} ⊂ Lj, lim→∞ u(•, s) = p ∈ Li∩Lj, lim→−∞ u(•, s) =
q ∈ Li ∩ Lj, and u is (i,J)-holomorphic treating R × [0, 1] as a subset
of C.

2. 2015-9-4

We start with an exercise.
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Exercise 2.1. Let V ⊂ C be open, and u : V → (M,ω, J) be holomor-
phic (with the structures on M compatible). What does

∫
V
u∗ω = 0

imply?

Fill out the survey! Before 23:59 on Tuesday, please. Otherwise,
everything here will be at the wrong level, and you may have serious
difficulties with this class. There will also be no class on Monday, in
recognition of the struggles of the American labor movement.

So, apparently we don’t all know Morse theory. So let’s learn it.

2.1. Morse theory. Fix a smooth manifold X with riemannian metric
and a smooth function f : X → R. One can define a graded abelian
group out of the data (X, f). Then, using g we will make a differential,
such that in good cases, we can recover H∗(X) from the cohomology
of the complex.

We define this graded abelian group to have generators Crit(f) =
{x ∈ X|dfx = 0}. There are some immediate issues, and we will ask
that f is sufficiently generic that its critical points are discrete. We ask
that it have the Morse property of the following lemma.

Lemma 2.2. For all smooth manifolds X almost every C∞ function
f satisfies the Morse property: for every critical point of f , there is a
coördinate chart about x such that f = x21+. . .+x2k−x2k+1−. . .−xdimX .

Remark. The number of negative signs above is coördinate-independent
and is known as the index of f at x, denoted by indx(f).

With that out of the way, with f a Morse function, we let the graded
abelian group be ⊕

x∈Crit(f)

Z[ind(x)],

where that bracket puts the Z in degree ind(x).

Example 2.3. If we let X be the usual 2-sphere and f be the usual
height function, the graded abelian group has components Z in degree 0
and 2, and zero elsewhere.

Now we find a differential. Define a putative differential ∂ sending
the n graded piece to the n−1 graded piece by ∂p =

∑
|q|=|p|−1 n(p, q)q,

where n(p, q) is the number of discrete gradient trajectories from q to p–
counted with a sign gotten by considering these gradient trajectories to
be the intersection of the ascending manifold from q (all points that end
up at q eventually) with some orientation, and the descending manifold
from p with some other rientation–where a gradient trajectory is a C∞

map R → X with tangent vector equal to ∇f everywhere. We know



4 HIRO LEE TANAKA NOTES BY GEOFFREY D. SMITH

this is a discrete set because of our restriction of the index of p and q to
be one away. In general, between critical points of index k and k′ the
path space of gradient trajectories modulo translation is just k−k′−1
(this is a theorem we invite you to look up at home!) A warning: this
only sometimes works, and requires f be nice in other respects.

But when is ∂ a differential? The answer: not always! We need a
bunch more assumptions to assure this: for instance, X must be com-
pact. In this case, we first note that if I is some compact 1−manifold,
perhaps with boundary, ∂I occurs in pairs. If I is oriented, the signed
count of ∂I is zero. So we want to realize the “broken trajectories” as
the boundary of a 1-manifold. To do so, we take the moduli of paths
p to r with ind(r) = ind(p) − 2, which is one-dimensional, and com-
pactify such that the broken paths are its boundary. Of course, this
only works if this one-manifold with boundary is proper, which in turn
requires that the original manifold be compact.

3. 2015-9-9

Exercise 3.1. 1. Let M be a symplectic manifold with dimM 6= 0.
Show that if ω = dθ for some θ ∈ Ω1, then M must be non-compact or
have boundary. An M admitting such a θ is called exact.
2. Let H : M → R be a C∞ function, and XH the dual vector field
to dH. Let ΦH : M × R → M denote the flow. Show that if L ⊂ M
is lagrangian, then so is L × R ↪−→ (M × T ∗R, ωM ⊕ ωT ∗R) given by
(x, t) 7→ (ΦH(x, t), t,−H(ΦH(x, t)))
3. Show that H is constant along the flow of XH .

These should be pretty easy.
Now, last time we had a broad overview of Morse theory, where we

constructed a chain complex based on the critical points of a Morse
function f on a compact riemannian manifold and a nice associated
differential on the complex. Upshot is that the homology of this Morse
complex is just the ordinary singular homology.

Today, we will fantasize about “compactifying” 1-dimensional mod-
uli spaces of holomorphic strips (polygons). That is, fixing L1, . . . , Ln ⊂
M lagrangians intersecting transversally (where M has a compatible
almost complex structure), we studied functions u : R × [0, 1] → M
satisfying (for fixed i, j):

(1) The boundary points u(t, 0) ∈ Li, u(t, 1) ∈ Lj;
(2) limt→±∞ u(t, •) ⊂ Li ∩ Lj;
(3) J ◦ du = du ◦ i.
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Let’s say that for some reason we can pick out a real 1-dimensional
space of such strips u. What does a compactification of this one-
dimensional space look like? One such limit point is two strips glued
together at 0. Another possibility is the formation of an energy bub-
ble on an interior point, or on the boundary. There is some confusion
within the class about whether two bubbles can form at once, and we
have some discussion about that with little resolution.

Critically, it seems like doing Morse theory as usual (defining a d
so that dp =

∑
q np,qq, where np,q is the number of holomorphic strips

from q to p) results in d2 6= 0, being the sum of some of these boundary
objects. But if we know that spheres and discs can’t appear, we do
have d2 = 0. One such situation is the aforementioned exact manifolds,
where ω is exact. And a lagrangian manifold L in M is called exact if
there is some f : L→ R such that θ|df . These conditions exclude the
problematic boundary objects, as an embedded sphere would need to
have positive area, whereas Stokes promises zero area.

Theorem 3.2. There is a set up in which if we define CF ∗(L0, L1) =⊕
p∈L0∩L1

Z[p] with dp as above, then d2 = 0 assuming M,L exact and
spin, where you should look up a spin lagrangian elsewhere.

Alas, it looks like we won’t define the Fukaya category today. We
are out of time.

4. 2015-9-11

Exercise 4.1. 1. Let M be a closed manifold. Show that if any of
the even dimensional de Rham cohomology groups vanish, M cannot
be symplectic.
2. Let M = T ∗Q, Q a smooth manifold. Given any Z ⊂ Q a smooth
manifold, define T ∗Z(Q) := {(z, α)|z ∈ Z, α ∈ T ∗Q|Z , α|TZ ≡ 0}. Show
that is an exact lagrangian submanifold.
3. Fix (M,ω). Prove a compatible almost complex structure J exists,
and that the space of compatible J is contractible.

Last time we motivated the choice of an exact symplectic manifold
(M,dθ), looked at lagrangian submanifolds such that θ|Li

= dfi for
some fi. We also looked at the space of deformations of paths from Li
to Lj.

Now a proofless, detail-lacking theorem.

Theorem 4.2. For all such Li we can define a cochain complex, the
Floer cochain complex, generated by the transverse intersection points
of Li and Lj, where d describes holomorphic strips.
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If you are familiar with dg categories, this may look familiar, but we
are not, so let’s us define it.

Definition 4.3. Fix a ring k. A dg category C over k is the data of:

• A set of objects ob(C)
• For all objectsX, Y , a cochain complex of k-modules hom∗(X, Y )
• A composition map hom∗(Y, Z)⊗k hom∗(X, Y )→ hom∗(X,Z)

consistent with the chain complex structure on each side (mean-
ing the natural total chain complex structure on the left-hand
side).

This composition map must be associative and have a unit in hom0(X,X)
for all X.

Remark. Given a dg category C, one can create its homotopy category
H0(C) with the same objects as C and the arrows of hom0(X, Y ).

Example 4.4. The category of k-cochain complexes, in which objects
are cochain complexes and homi(X, Y ) are degree i linear maps X → Y
(i.e. a collection of maps sending X i to Y j+i), not necessarily chain
maps. Then given f ∈ homi(X, Y ), df is defined as sending x to
dY f(x)− (−1)i+1f(dXx).

Remark. The zeroeth cohomology of hom∗(X, Y ) is just cochain maps
mod homotopy.

Now, the question of the day is whether we can define a dg category
whose objects are Li and with hom∗(Li, Lj) = CF ∗(Li, Lj). Alas, we
cannot (unless we loosen things os that that equality is just a homo-
topy). The structure that actually pops out is that of an A∞ cate-
gory. Exploring, what we want is a map CF ∗(L1, L2)⊗CF ∗(L0, L1)→
CF ∗(L0, L2) that sends points in the intersections of L1∩L2 and L0∩L1

to some combination of points of L0∩L2. To do so, we count holomor-
phic triangles with vertices at p, q, r with p, q, r in L1 ∩ L2 etc.

Definition 4.5. Given p, q, r, define nrp,q as the number of holomorphic
triangles in M with boundary conditions, e.g. holomorphic maps from
the closed unit disc minus three boundary points to M with boundary
on L0, L1, L2 such that the removed points would “sent” to p, q, r
respectively.

Now define composition µ2 : CF ∗(L1, L2)⊗CF ∗(L0, L1)→ CF ∗(L0, L2)
by µ2(p ⊗ q) =

∑
r∈L0∩L2

nrp,qr. There are two things to check: that
this is a map of complexes, and that it is associative. The first thing
is okay, the second goes wrong.
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5. 2015-9-14

Exercise 5.1. 1. Consider R2n with its standard symplectic form. Let
GrLag(R2n) be the set of V ⊂ R2n linear such that V is a Lagrangian.
Show

GrLag(R2n) ∼= U(n)/O(n),

and compute the fundamental group.
2. Show a dg category with one object is the same thing as a differen-
tial graded algebra (unital, associative, not necessarily graded commu-
tative) .
3.In an A∞ category C, suppose there is some threefold multiplication
map µ3 : hom(L2, L3)⊗hom(L1, L2)⊗hom(L0, L1)→ hom(L0, L3)[−1]
such that µ1µ3+µ3(µ1,−,−)+µ3(−, µ1,−)+µ3(−,−, µ1) = µ2(µ2,−)+
µ2(−, µ2). Show that homH∗(C)(X, Y ) := H∗ homC(X, Y ) is a category
enriched over graded abelian groups. This primarily entails showing
that there is some associative composition law.

Tonight at 6:30 in Emerson 108 is a Harvard Gender Inclusivity in
Mathematics kick-off event.

Last time: We defined µ1 : hom(Li, Lj)→ hom(Li, Lj)[1] using holo-
morphic strips, and a multiplication map µ2 : hom(L1, L2)⊗hom(L0, L1)→
hom(L0, L2). But this does not define a dg category. To prove associa-
tivity in µ2, we might try to look at the boundary of a one dimensional
component of disks that look like the complex disk punctured four
times on the boundary mapping in the natural way: this has boundary
consisting of the disk with a vertex bubbled off, or with two adjacent
points bubbled off.

Remark. This degeneracy list is very similar to the boundary list for
strips, since the two are conformally equivalent modulo two additional
boundary points.

To rephrase, let Mx0,x1,x2,y be the set of u sending the relevant
boundaries to L0, L1, L2, L3 in a way compatible with the almost com-
plex structure. LetM1 be the one-dimensional components. There is a
compactification, which is a one-dimensional manifold with boundary.
Algebraically, we have

0 = µ3(µ1x2, x1, x0)+. . .+µ
2(µ2(x2, x1), x0)+µ

2(x2, µ
2(x1, x0))+µ

1µ3(x2, x1, x0),

where µ3 is defined in terms of strips going from three points x0, x1, x2
to y. Hey! This is the exercise from earlier!

In particular, associativity may not hold, unless µ3 vanishes in the
way we want. This essentially never happens, to the extent that we are
not willing to hypothesize that it does. Instead, µ2 is only associative
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up to homotopy (given by µ3). But µ3 was a choice. We want to show
that composing ≥ 4 elements has coherent associativity.

Definition 5.2. Let µk : hom(Lk−1, Lk)⊗· · ·⊗hom(L0, L1)→ hom(L0, Lk)[2−
k] be the set of y in L0 ∩Lk weighted by disks going from x0, . . . , xk to
y.

Theorem 5.3. These operations satisfy the A∞ relations:

0 =
∑

u+t+r=k
s=r+u+1

µs(1⊗r ⊗ µt ⊗ 1⊗u).

And we have that an A∞ category os the data of a collection of
objects C with graded hom k modules and a multilinear map µk as
above satisfying the A∞ relations.

6. 2015-9-16

Exercise 6.1. Consider the Clifford torus T n in CPn. Show that this
torus is lagrangian, show that Di = [1 : . . . : 1 : z : 1 : . . . : 1] with
|z| < 1 a holomorphic disk in CPn with boundary on the Clifford torus.
Show that TCPn|Di

∼= Di × Cn and the tangent space to the Clifford
torus gives a map S1 = ∂Di → GrLag(Cn). Final question: what
element of π1(GrLag(Cn)) does this represent?

This becomes more relevant once we have the additional context of
the Maslov index.

Talk topics have been posted on Piazza. Get ’em while they’re hot.
Last time we saw the idea of why Lagrangians in an exact symplectic

manifold M , counting holomorphic polygons with boundaries in Li
should give rise to the structure of an A∞ category. We still have to
figure out some important things, like the grading of this category, and
the transversality question of why holomorphic maps to M satisfying
suitable boundary conditions constitute a smooth manifold. Relatedly,
what happens if the intersections of Lagrangians are not transverse.
There are gluing questions, like how we compactify M, the relevant
moduli space, and signs questions, about how we orient M. Assume
these issues can be resolved for now. Time for a bad definition!

Definition 6.2 (Not actually correct, but flavorful). Fix M . The
Fukaya category of M has objects the Lagrangians and hom sets given
by the CF • with A∞ multiplication operations µk as given last time.

Remark. Last time we did not mention units of an A∞ category, that
is, idL ∈ hom(L,L). So definition from last time is of a non-unital
category. Our quick fix is to say an A∞ category C if H•C is unital.
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6.1. A baby form of homological mirror symmetry.

Conjecture (Kontsevich 1994 ICM). For all Calabi-Yau manifolds
X—those where the canonical bundle is trivial—there is a Calabi-Yau
manifold X∨ and equivalences of A∞ categories DπFuk(X) ' DbCoh(X∨)
and DbCoh(X) ' DπFuk(X∨), where Dπ is some weird closure oper-
ator that your correspondent doesn’t understand yet.

Now, there are a lot of directions we can go in from here for e.g. talks.
One is understanding CF ∗(L,L) (requires analysis, Morse theory,...).
Another is symplectic homology, which is pretty big. There are a bunch
of others, posted online.

7. 2015-9-18

You should fill out the talk survey, and start posting what solutions
you have online. Like for srs.

7.1. Continued work with the to-do list. Smoothness of M, the
moduli of holomorphic maps from the disk to M satisfying a particular
boundary condition. The answer? It’s not. Sorry.

To set up, fix the unit disk D ⊂ C and puncture k + 1 boundary
points x0, . . . , xk. Set D̂ = D\{xi}. Different choices of {xi} give rise
to non-equivalent complex manifolds in general, as the automorphisms
of the unit disk only are triply transitive on the boundary. So, there is
instead a moduli space of choices of k+ 1 points on the boundary of D
modulo biholomorphic automorphism. Let R̃ be the moduli of k + 1
unordered points on S1, and let R be the same space modulo PSL2.
It’s worth noting that this is a manifold for k ≥ 2. It is not “stacky or
orbifoldy in any way”. For instance, R2+1 is a point. Now, when k ≥ 3
we let M consist of pairs (u, S) where S is a choice of holomorphic
structure on D minus k + 1 points and u is a smooth map to M . And
there is a bundle E overM whose fiber at a point is the set of all smooth
sections of u∗TM . And there is a second vector bundle F overM with
fiber hom(TS, u∗TM). Now, we have the operation ∂u = 1

2
(du+Jduj),

which is naturally 0 for holomorphic u. This produces a section ∂ of
F , which is zero precisely when u is holomorphic. We hope that this
subset should be a C∞ manifold if the graph of ∂. But it almost never
is a transverse intersection, so we will perturb the ∂ equation and or
change the fibers of F . To address the first of those, we choose a 1 form
on S with values in C∞(M), e.g., Y ∈ Ω1

dR(S,C∞(M)), and we perturb
by studying the differential equation ∂(u) = XY + JXY j, where XY

is the natural map TS → Γ(TM) given by Y put together with the
symplectic form. The way we change F is looking at the subbundle
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(respecting some almost complex structure (?)?). Then there’s some
choice of perturbations producing a transverse intersection.

8. 2015-9-21

Last time, starting with the setup of an exact symplectic manifold
M , we examined the set Rk+1 of holomorphic structures on D2 minus
k+ 1 points, or equivalently the number of conformal structures of the
disk with that many punctures. It has dimension k − 2 by standard
considerations. We then look at the space of pairs (u, S) with S a holo-
morphic structure and u a map S → M a map sending the boundary
to chosen lagrangian submanifolds and satisfying the perturbation-of-
holomorphic condition from last time.

Remark. This also resolves the issue of lagrangians not intersecting
transversally, by focusing attention away from the intersection itself,
describing it instead as a hamiltonian chord.

Definition 8.1. A hamiltonian chord is a C∞ map c : [0, 1]→M such
that c(0) ∈ Li−1, c(1) ∈ Li, and c′(t) = XY (c(t)) for the perturbing
hamiltonian Y .

Theorem 8.2. There is a pair of choices of Jx, Y making the moduli
space of pairs (u, S) a C∞ manifold, where Jx is a compatible almost
complex structure on M for all x in S.

Today, we ask what the dimension of the space of pairs u, S is. The
idea is that given a map u : D2 → M sending the tangent space of
the boundary is sent to LagGr(M), and we can do a dimension count
via this in some way. In particular, the winding number of this map
determines the dimension of the space, and is called the Maslov index
of u.

Definition 8.3. A symplectic manifold M is almost Calabi-Yau if
c1(TM) = 0.

Given a almost Calabi-Yau manifold, after choosing a trivialization,
letting L = LagGr(M), there is a map L → S1. If this map lifts to
some α, then α is called a grading on L. Fun fact, the ability to shift a
grading by an arbitrary integer echoes the ability to shift the L complex
as an object of the Fukaya category.

We are now prepared to talk about the graing on CF ∗(L0, L1). Sup-
pose the lagrangians have gradings α0 and α1. Then the degree of
x ∈ L0 ∩ L1 is the winding number of a path from α1(x) to α0(x)
ending with negative derivative at α0(x), taking the convention that
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winding numbers are determined by the signed number of passes with
α0(x) + Z.

9. 2015-9-23

Last time, we started thinking about the dimension ofM = {(u, S)}
and started assigning gradings to the intersections of graded lagrangians.
The goal of today is to sketch an argument for the following claim.

Claim 9.1. Fix graded lagrangians Li, αi 0 ≤ i ≤ k, and consider
the moduli M of pairs (u, S) of maps from a holomorphic disk S to
M satisfying the usual boundary conditions with particular points xi ∈
Li−1∩Li being the limits as we approach punctures. Then the dimension
of M is the index of the incoming point x0 minus the index of all the
outgoing points plus k − 2.

We remind ourselves that the index of a point indicates its degree in
the CF complex.

Remark. This whole nonsense explains why µk is a degree 2− k map,
as that allows the relevant moduli space to have dimension 0.

First, we will examine strips S = R × [0, 1], and fix a pseudoholo-
morphic map u satisfying the boundary conditions. Now, last time we
claimed that you compute dimMu by examining some winding number
u|∂s : ∂s→ LagGr.

Now, how do we make a loop in LagGr? We assume the maps
R×{x} → LagGr(Cn) are compactly supported, which determines ins
some convoluted way your correspondent doesn’t understand a loop in
the lagrangian grassmannian. A theorem due to Floer says that the
winding number of the path duly produced is the dimension ofMu. To
prove this, Floer does some serious real analysis and computes some
nonsense called the spectral flow, which he shows is equal to both of
what we want.

Of course, the obvious question is how this relates then to i(x0) and
i(x1). Essentially, the answer is that it works, regardless, of course,
of our choice of grading. To generalize, we can glue disks using a
holomorphic connected sum and consider ∂ operators.

Example 9.2. Let M be the complex numbers with the usual sym-
plectic structure and the usual almost holomorphic structure. Pick a
trivialization of the squared determinant of the tangent bundle. Let L0

be a line, and L1 a weird curve that intersects it twice. The claim is
that there is a unique holomorphic strip between the two, up to dull
automorphisms. This is a consequence of Riemann mapping.
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10. 2015-9-25

Today, examples!

10.0.1. Background. Given an exact symplectic manifold (M,ω = dθ),
can we find M∨ such that the Fukaya category of M is the dg enhance-
ment of DbCoh(M∨).

10.0.2. Example. Consider M a point. Its tangent space is rank zero,
but its determinant bundle is still R. Then ω = 0 is a symplectic form,
and the only corresponding lagrangian other than the empty set is a
single point. For a grading, a choice of integer suffices (when L is a
point; when it’s the empty set there’s nothing to grade). Based on
what we’ve discussed so far, an object of Fuk(M) is a pair (L, α) where
L is a lagrangian and α a grading, so there’s a Z worth of objects in
this category plus the empty object. To compute hom spaces in the
category, we first note that the empty set is irrelevant (all hom sets
involving it will be empty). Otherwise, we should have CF ∗(L0, L1) =⊕

p∈L0∩L1
Z = Z with grading n′ − n, where n, n′ are the gradings of

L0, L1 respectively.
Now, let’s compute µ1, µ2 etc. µ1 must be zero for two reasons, one,

because our graded abelian group has no other choice (having only one
Z factor, in one single degree), and second, because a holomorphic map
u from the strip must be constant, so Mu/R has dimension −1. µ2

is really a map Z[−(n2 − n1)] ⊗ Z[−(n1 − n0)] → Z[−(n2 − n0)]. We
claim this is the multiplication map. For there is a unique punctured
disk map to M for any triple of points in intersections of lagrangians,
so the product of two generators maps to a generator.

Finally, we claim µk ≡ 0 for k ≥ 3. For then the choice of holomor-
phic structure is not fixed in a u, S pair, and all points of the moduli
are hence contained in dimension not zero. So multiplication is zero.

Then, what is the category? Well, we’ve described it precisely...
But the upshot is that this category cannot be DbCoh(X) for any X,
as for instance direct sums would exist otherwise. For this reason, we
consider a “completion” of the Fukaya category in general. The general
philosophy is that any property that an object Y has is inherited by
the objects Maps(X, Y ). This comes up in that the properties that
DbCoh(X) has are the algebraic properties that chains have. Hence, to
let the Fukaya category have these algebraic properties as well, consider
the functor space FunA∞(Fuk(M)op, ChainZ).

Lemma 10.1 (Yoneda’s lemma). There is a fully faithful embedding
Fuk → FunA∞(Fuk(M)op, ChainZ).
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Remark. This result is not quite as stupid as the first Yoneda lemma
(what is an A∞ functor, anyway?), but is not hard and applies to
general A∞ categories. The map is just like in the original Yoneda
lemma.

11. 2015-9-28

Last time, we looked at homological mirror symmetry for our man-
ifold a point, and noticed that the Fukaya category was not a dg en-
hancement of a derived category of bounded complexes of coherent
sheaves of any variety, so we realized we needed to modify our notion
of mirror symmetry to make it work out well.

Today, we set up and/or introduce basic dg category tools and
terminology to define the so-called DπFuk(pt) category, also known
as the Karoubi completion of Fuk(pt) or Perf(Fuk(pt)). We claim
DπFuk(pt) ' DbCoh(SpecZ) as A∞ categories. Then tensoring with
C produces good mirror symmetry.

Fun fact!. Originally, mirror symmetry was not formulated over C
or Z, but instead over the so-called Novikov ring, but under certain
circumstances we can use these nicer rings instead.

By Yoneda’s lemma there is a fully faithful embedding Fuk(pt) ↪→
FunA∞(Fuk(pt)op,ChainZ) sending X to homFuk(pt)(•, X). And by the
philosophy from last time, the big category on the right has all the nice
algebraic properties that ChainZ has (e.g. it inherits a dg structure
from ChainZ). In addition, there’s a coproduct of two objects (which
is also a product!), and hence finite coproducts. In addition, mapping
cones exist; for all morphisms f : A→ B, there is an object Cone(f) ∈
ChainZ and a commutative (up to homotopy) diagram

A B

0 Cone(f),

f

g

and such that all other commutative diagrams of this sort admits a
unique map from the cone. In the chain complex category, in fact, we
can show that Cone(f) ' B ⊕A[1] with a well-chosen differential that
can be found in any homological algebra textbook.
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In addition, we have in our category that

A B

0 D,

f

g

realizes D as a mapping cone if and only if it realizes A as a homotopy
kernel of g, in the same sense that the mapping cone is the homotopy
cokernel. Neither of these are the things you get if you only think of
kernels and cokernels of chain complexes, without homotopy consider-
ations.

Finally, all idempotents—maps f : A→ A such that f◦f = f—there
exists an object R and maps i, r such that

A A

R D,

f

r
i

id

i

commutes up to homotopy. We claim that ChainZ gives all these prop-
erties to FunA∞(Fuk(pt)op,ChainZ), essentially defining everything point-
wise in an ad-hoc manner.

So now there is an obvious candidate for DπFuk(pt), the smallest
full subcategory of FunA∞(Fuk(pt)op,ChainZ) containing the image of
the Yoneda embedding and satisfying the conditions we talked about
above. This is called the Karoubi completion.

Remark. IfX is smooth and projective, the dg enhancement ofDbCoh(X)
also satisfies the properties listed above.

We now have enough stuff to prove the first claim of the day. We
stsart by noting that the image of the Yoneda embedding of Fuk(pt)
is just {0,Z,Z[±1], . . .}. Since any F ∈ FunA∞ is the colimit of repre-
sentables (that is, of functors of the form hom(•, Y )), there is a functor
ChainZ → Fun(Fuk,ChainZ), the smallest full subset of ChainZ con-
taining the image and satisfying the properties above is the category
of bounded degree finitely generated complexes, as was to be shown.

Remark. For X affine, smooth, noetherian, we have

DbCoh(X) ' Db(fgH0(OX)−Mod).
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