1 October 2.

Exercise 1.1. Let $f: M \rightarrow \mathbb{R}$ be Morse, and fix a generic metric g. Compare the Morse complex of f with that of $-f$. What can you say? (Specifically, what can you get about Poincaré Duality?)

Exercise 1.2. Let $f_{i}: M_{i} \rightarrow \mathbb{R}$ be Morse for $i=1,2$. What can you say about the Morse complex of $f_{1} \times f_{2}: M_{1} \times M_{2} \rightarrow \mathbb{R}$? (Specifically, what can you get about the Kunneth formula?)

Last time, we argued that $H^{\bullet}\left(C F_{T \times S^{1}}^{\bullet}\left(S^{1}, \Phi_{t}\left(S^{1}\right)\right)\right) \cong H^{\bullet}\left(S^{1}\right)$, where Φ is a Hamiltonian. Today:

Theorem 1.1 (PSS isomorphism). Let $L \subset M$ be an exact Lagrangian, and assume it can be graded. Then there is an isomorphism

$$
H F^{\bullet}(L, \varphi(L)) \cong H M_{n-\bullet}(L) \cong H_{n-\bullet}(L)
$$

Motivation: observe that vector fields that come from functions tend to have more zeros than arbitrary vector fields. For example, let $X=S^{3}$. This has all kinds of nowhere vanishing vector fields on it, being a Lie group. But assume $V \in \Gamma(T M)$ is equal to ∇f for some $f: S^{3} \rightarrow \mathbb{R}$. By Morse theory, we know a generic function f must have at least two critical points, because $H_{\bullet}\left(S^{3}\right)=k \oplus k \cong H M_{\bullet}\left(S^{3}, f\right)$, so $C M_{\bullet}$ must have rank at least 2 . (Alternatively, a function on a compact domain must have a maximum and a minimum.) In general for M compact, a generic f should give ∇f with at least $\sum_{i=0}^{\operatorname{dim} M} b^{i}(M)$ zeros.

Conjecture 1.1 (Arnol'd). Let $H: M \rightarrow \mathbb{R}$ be a generic Hamiltonian and $L \subset M$ a compact Lagrangian. Then $\#\left(L \cap \Phi_{1}^{X_{H}}(L)\right) \geq \sum b^{i}(L)$.

The PSS isomorphism is a very special case of the Arnol'd conjecture.
Note that the ring structure on $H^{\bullet}(L)$ is much less information than the ring structure on $\Omega^{\bullet}(L)$. For example, it's a theorem (called a formality theorem) when $H^{\bullet}(X) \cong \Omega^{\bullet}(X)$ as a commutative differential graded algebra. This happens when X is a Lie group, S^{n}, or Kähler; such manifolds are called "formal manifolds".

Idea of PSS construction. Standing assumption: $C F^{\bullet}\left(L, \varphi^{H}(L)\right)$ is equal to $C F^{\bullet}(L, L)$ where the pseudoholomorphic $(\cdot)^{0,1}=0$ equation is perturbed compatibly with H. Idea: let $u: \mathbb{R} \times[0,1] \rightarrow M$ with $\left(d u-X_{Y}\right)^{0,1}=0$. Near $\pm \infty, u$ converges to a Hamiltonian chord along H_{t}. So a generator for $C F^{\bullet}(L, L)=C F^{\bullet}\left(L, \varphi^{H}(L)\right)$ is the same thing as a time-1 chord from L to itself.

How do we get a map to $C M_{n-\bullet}$? Fix $f: L \rightarrow \mathbb{R}, g$ a metric on L. Let $q \in \operatorname{Crit}(f)$. We study the following moduli space: let $\gamma: \mathbb{R} \rightarrow L$ be such that $-\infty \mapsto q$ and $\dot{\gamma}(t)=$ $-\nabla f(\gamma(t))$. Let $u: \mathbb{R} \times[0,1] \rightarrow M$ be a holomorphic strip attached to (pinched at) $\gamma(0)$ on one end and having x at the other satisfying "some conditions".

Let $M(x, q)$ be the moduli space of $\{(\gamma, u)\}$. Define the PSS map to be

$$
\Phi: C F^{k}(L, L) \rightarrow C M_{n-k}(L, f)
$$

$$
x \mapsto \sum_{q} \# M_{[0]}(x, q) q
$$

There's a map in the other direction

$$
\begin{aligned}
& \Psi: C M_{n-k} \rightarrow C F^{k} \\
& q \mapsto \sum \# M(q, x) x
\end{aligned}
$$

For this to induce a map on H^{\bullet}, we need to check that $d \Phi=\Phi d$ and $d \Psi=\Psi d$. It turns out that one can compactify the one-dimensional component of $M(x, q)$. From $q, \gamma, \gamma(0), u, x$ we get possible boundary elements that look like $q, \tilde{\gamma}, q^{\prime}, \tilde{\gamma}^{\prime}, \tilde{\gamma}(0), u, x$ and $q, \gamma, \gamma(0), x^{\prime}, x$. Our assumptions prevent bubbles popping out either on the strip or on the gradient trajectory. Thus

$$
0=\#\left(\partial \bar{M}_{[1]}(x, q)\right)=d_{M o r s e} \Phi \pm \Phi d_{\text {Floer }}
$$

The same proof works for Ψ.
How do we see this is an isomorphism on cohomology? Consider $\Phi \circ \Psi: C M_{n-k} \rightarrow C F^{k} \rightarrow$ $C M_{n-k}$. The picture is a gradient trajectory from q to a point, expanding into a holomorphic strip at x, followed by another attached holomorphic strip going to another point, which has a gradient trajectory to q^{\prime}. What PSS does (see Albers) is exhibit a cobordism from the 0 -manifold counting such pictures to the 0 -manifold counting gradient trajectories from q to q^{\prime}. Note that in either case, the only possible γ, u are the constant ones. So $\Phi \circ \Psi=\mathrm{id}$.

Now consider $\Psi \circ \Phi: C F^{k} \rightarrow C M_{n-k} \rightarrow C F^{k}$. Now we're counting pictures consisting of a holomorphic strip from x^{\prime} to a point, then a gradient trajectory to q, then a gradient trajectory to another point, then a holomorphic strip to x. We can construct a cobordism from the 0 -manifold counting this to a 0 -manifold counting holomorphic strips between x^{\prime} and x. The way to do this is to change the relevant PDEs so that the gradient trajectories shrink to the point q, then cut off the strips near q and glue them together. Since $|x|=\left|x^{\prime}\right|$, there are only constant strips.

Some notes/details:
—How do we actually define $M(x, q)$? It is the pullback of the map $e v_{0}: G(q) \times M(x) \rightarrow$ $L \times L,(\gamma, u) \rightarrow(\gamma(0), u(-\infty))$, to L under the map $\Delta: L \rightarrow L \times L$, where

$$
\begin{gathered}
G(q)=\{\gamma: \mathbb{R} \rightarrow M \mid \gamma(-\infty)=q, \dot{\gamma}=-\nabla f\} \\
M^{\prime}(x)=\{u: \mathbb{R} \times[0,1] \rightarrow M \text { such that... }\}
\end{gathered}
$$

Here $\left(d u-\beta X_{Y}\right)^{0,1}=0$, where β is a function on $\mathbb{R} \times[0,1]$ such that $\beta \equiv 1$ on $t \gg 0$ and $\beta \equiv 0$ on $t \ll 0$, so $u(-\infty) \in L, u(+\infty)=x,\left.u\right|_{\mathbb{R} \times\{0,1\}} \subset L$.

