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Exercise 1.1. Let f : M — R be Morse, and fix a generic metric g. Compare the Morse
complex of f with that of —f. What can you say? (Specifically, what can you get about
Poincaré Duality?)

Exercise 1.2. Let f; : M; — R be Morse for : = 1,2. What can you say about the Morse
complex of f1 X fo : My x My — R? (Specifically, what can you get about the Kunneth
formula?)

Last time, we argued that H*(CE}_ ¢ (S*, ®:(S"))) = H*(S"), where ® is a Hamiltonian.
Today:

Theorem 1.1 (PSS isomorphism). Let L. C M be an exact Lagrangian, and assume it can
be graded. Then there is an isomorphism

HF*(L,p(L)) = HM,_o(L) = H,_(L).

Motivation: observe that vector fields that come from functions tend to have more zeros
than arbitrary vector fields. For example, let X = S3. This has all kinds of nowhere
vanishing vector fields on it, being a Lie group. But assume V € I'(T'M) is equal to V f for
some f : S® — R. By Morse theory, we know a generic function f must have at least two
critical points, because Ho(S?) = k ® k = HM,(S3, f), so CM, must have rank at least 2.
(Alternatively, a function on a compact domain must have a maximum and a minimum.) In
general for M compact, a generic f should give V f with at least Z?;HSM b'(M) zeros.

Conjecture 1.1 (Arnol’d). Let H : M — R be a generic Hamiltonian and L C M a compact
Lagrangian. Then #(L N &7 (L)) > ST 0 (L).

The PSS isomorphism is a very special case of the Arnol’d conjecture.

Note that the ring structure on H®(L) is much less information than the ring structure
on Q°*(L). For example, it’s a theorem (called a formality theorem) when H®(X) = Q®*(X)
as a commutative differential graded algebra. This happens when X is a Lie group, S™, or
Kahler; such manifolds are called “formal manifolds”.

Idea of PSS construction. Standing assumption: CF*(L, " (L)) is equal to CF*(L, L) where
the pseudoholomorphic (-)%' = 0 equation is perturbed compatibly with H. Idea: let
u: R x[0,1] - M with (du — Xy)®' = 0. Near +oo, u converges to a Hamiltonian
chord along H;. So a generator for CF*(L,L) = CF*(L,o"(L)) is the same thing as a
time-1 chord from L to itself.

How do we get a map to CM,,_,7 Fix f: L — R, g a metric on L. Let ¢ € Crit(f).
We study the following moduli space: let v : R — L be such that —oco — ¢ and #(t) =
=V f(y(t)). Let u: R x [0,1] — M be a holomorphic strip attached to (pinched at) v(0) on
one end and having = at the other satisfying “some conditions”.

Let M(z,q) be the moduli space of {(y,u)}. Define the PSS map to be

& : CFF(L,L) — CM,_(L, f)



x> Y #Mpg(x,q)q.

There’s a map in the other direction

U:.CM,_, — CF*

g Y #M(q,x)x.

For this to induce a map on H*®, we need to check that d® = &d and d¥ = ¥d. It turns out
that one can compactify the one-dimensional component of M (z, q). From ¢,~,v(0), u, x we
get possible boundary elements that look like ¢,7,¢’,7,%(0),u,z and ¢,7,v(0),2',2. Our
assumptions prevent bubbles popping out either on the strip or on the gradient trajectory.
Thus

0= #(8M[1] ([E, Q)) - dMorse(I> + q)dFloer-

The same proof works for .

How do we see this is an isomorphism on cohomology? Consider ®oW : CM,,_;, — CF* —
CM,,_y. The picture is a gradient trajectory from ¢ to a point, expanding into a holomorphic
strip at x, followed by another attached holomorphic strip going to another point, which has
a gradient trajectory to ¢’. What PSS does (see Albers) is exhibit a cobordism from the
0-manifold counting such pictures to the 0-manifold counting gradient trajectories from ¢ to
¢'. Note that in either case, the only possible 7, u are the constant ones. So ® o ¥ = id.

Now consider ¥ o ® : CF* — CM,_;, — CF*. Now we're counting pictures consisting
of a holomorphic strip from 2’ to a point, then a gradient trajectory to ¢, then a gradient
trajectory to another point, then a holomorphic strip to x. We can construct a cobordism
from the O-manifold counting this to a 0-manifold counting holomorphic strips between
and x. The way to do this is to change the relevant PDEs so that the gradient trajectories
shrink to the point ¢, then cut off the strips near ¢ and glue them together. Since |z| = |2/|,
there are only constant strips. O]

Some notes/details:
—How do we actually define M (x, q)? It is the pullback of the map evy : G(q) x M (z) —
L x L, (y,u) = (7(0),u(—00)), to L under the map A : L — L x L, where
G(g) ={7v:R = M|[y(-00) =¢,7= -V}

M'(z) = {u:R x [0,1] = M such that...}.

Here (du — Xy)%! = 0, where 8 is a function on R x [0, 1] such that 3 =1 on ¢ > 0 and
f=0ont<0,s0u(—0) € L, u(+00) = x, ulgxqo,1} C L.



