1 October 9.

Fixes from last time due to confusion over left vs. right modules:
Lemma 1.1. Let $\mathscr{B} \hookrightarrow \mathscr{C}$ be a full A_{∞} subcategory. Fix $K \in o b(\mathscr{C})$. If $Y_{K}^{r} \otimes_{\mathscr{B}} Y_{K}^{l} \rightarrow$ $\operatorname{Hom}_{\mathscr{G}}(K, K)$ hits a unit of $\operatorname{Hom}_{\mathscr{G}}(K, K)$, then $K \in D^{\pi}(\mathscr{B})$. Here $Y_{K}^{r}: \mathscr{B}^{o p} \rightarrow$ Chain $_{\mathbb{Z}}$ is $\cdot \mapsto \operatorname{Hom}_{\mathscr{B}}(\cdot, K)$ and $Y_{K}^{l}: \mathscr{B} \rightarrow$ Chain $_{\mathbb{Z}}$ is $\cdot \mapsto \operatorname{Hom}_{\mathscr{B}}(K, \cdot)$, and
$Y_{K}^{r} \otimes_{\mathscr{B}} Y_{K}^{l}=\oplus_{X_{0}, \ldots, X_{n} \in o b(\mathscr{B})} Y_{K}^{r}\left(X_{n}\right) \otimes \operatorname{Hom}_{B}\left(X_{n-1}, X_{n}\right) \otimes \cdots \otimes \operatorname{Hom}\left(X_{0}, X_{1}\right) \otimes Y_{K}^{l}\left(X_{0}\right) \in$ Chain $_{\mathbb{Z}}$.
The map to $\operatorname{Hom}_{\mathscr{C}}(K, K)$ is what you would expect given the definitions of Y_{K}^{r}, Y_{K}^{l}.
Proof. Pass to Fun($\mathscr{C}^{o p}$, Chain $\left._{\mathbb{Z}}\right)$. To prove $K \in D^{\pi} \mathscr{B} \subset D^{\pi} \mathscr{C} \subset$ Fun $\left(\mathscr{C}^{o p}\right.$, Chain $\left._{\mathbb{Z}}\right)$, we need to exhibit an object $U \in D^{b} \mathscr{B}$ and morphisms $\underline{K} \rightarrow U \rightarrow \underline{K}$ commuting with id $: \underline{K} \rightarrow \underline{K}$. Here we think of U, \underline{K} as objects in Fun($\mathscr{C}^{o p}$, Chain $)$, where $\underline{K}: \mathscr{C}^{o p} \rightarrow$ Chain $_{\mathbb{Z}}$ is $\cdot \mapsto \operatorname{Hom}_{\mathscr{C}}(\cdot, K)$. If we have this, then we have a commutative diagram

where e is an idempotent and (K, f, g) split e. So if $U \in D^{b} \mathscr{B}$, which is generated from \mathscr{B} by a finite number of direct sums and cones, then $K \in D^{\pi} B$, which also has idempotents.

How to exhibit such an object? By assumption, $Y^{r} \otimes_{\mathscr{B}} Y^{l} \rightarrow \operatorname{Hom}(K, K)$ hits a unit. Let $\tilde{u} \in Y^{r} \otimes_{\mathscr{B}} Y^{l}$ be an element that hits a unit. Then

$$
\tilde{u} \in \oplus_{n \leq N} \oplus_{X_{0}, \ldots, X_{n}} \operatorname{Hom}\left(X_{n}, K\right) \otimes \operatorname{Hom}\left(X_{n-1}, X_{n}\right) \otimes \cdots \otimes \operatorname{Hom}\left(X_{0}, X_{1}\right) \otimes \operatorname{Hom}\left(K, X_{0}\right)
$$

for some $N<\infty$. Define

$$
\begin{gathered}
U: \mathscr{C}^{o p} \rightarrow \text { Chain }_{\mathbb{Z}} \\
\cdot \mapsto \oplus_{n \leq N} \oplus_{X_{0}, \ldots, X_{n}} \operatorname{Hom}\left(X_{n}, K\right) \otimes \operatorname{Hom}\left(X_{n-1}, X_{n}\right) \otimes \cdots \otimes \operatorname{Hom}\left(X_{0}, X_{1}\right) \otimes \operatorname{Hom}\left(\cdot, X_{0}\right) .
\end{gathered}
$$

We need to exhibit

$$
f \otimes g \in \operatorname{Hom}_{\mathscr{C} o p-M o d}(\underline{K}, U) \otimes \operatorname{Hom}_{\mathscr{C} o p-M o d}(U, \underline{K})
$$

hitting $\operatorname{id}_{\underline{K}} \in \operatorname{Hom}_{\mathscr{C}^{\circ p}-\mathrm{Mod}}(\underline{K}, \underline{K})$. By the Yoneda lemma,

$$
\begin{gathered}
\operatorname{Hom}_{\mathscr{C}^{\text {op }}-M o d}(\underline{K}, U) \cong U(K) \\
=\oplus_{n \leq N} \oplus \operatorname{Hom}\left(X_{n}, K\right) \otimes \operatorname{Hom}\left(X_{n-1}, X_{n}\right) \otimes \cdots \otimes \operatorname{Hom}\left(X_{0}, X_{1}\right) \otimes \operatorname{Hom}\left(K, X_{0}\right)
\end{gathered}
$$

which contains \tilde{u}. Let $f=\tilde{u}$. But there is also an obvious map $U \rightarrow \underline{K}$ given by composition: for all $X \in o b(\mathscr{C})$, we need a map

$$
\oplus_{n \leq N} \oplus \operatorname{Hom}\left(X_{n}, K\right) \otimes \operatorname{Hom}\left(X_{n-1}, X_{n}\right) \otimes \cdots \otimes \operatorname{Hom}\left(X_{0}, X_{1}\right) \otimes \operatorname{Hom}\left(X, X_{0}\right)
$$

$$
=U(X) \rightarrow \underline{K}(X)=\operatorname{Hom}_{\mathscr{C}}(X, K)
$$

which we can take to be $\sum \mu^{n}$. By assumption, $g \circ f=g \circ \tilde{u}$ is a unit in K.
We're almost done. Problem: is U really in D^{b} ? Tensoring with an infinite rank thing produces an infinite direct sum, which D^{b} doesn't cover. So if \mathscr{C} has hom complexes with ∞-rank cohomology, U might not be in $D^{b} \mathscr{B}$.
(Interlude: we have

$$
\begin{gathered}
\mathscr{B} \hookrightarrow D^{b} \mathscr{B} \\
L \mapsto \operatorname{Hom}_{\mathscr{C}}(\cdot, L)=\underline{L} .
\end{gathered}
$$

Given a \mathbb{Z}-module V, we can create a new element of $\mathscr{C}^{o p}-\operatorname{Mod}$ by

$$
V \otimes \underline{L}: \cdot \mapsto V \otimes \operatorname{Hom}_{\mathscr{C}}(\cdot, L)
$$

for $\cdot \in \mathscr{C}$. If $V=\oplus_{n} A_{n}$, then $V \otimes \underline{L}=\oplus A_{n} \otimes \underline{L}$.)
Fortunately, we can arrange for U to be in $D^{b} \mathscr{B}$ as follows: by definition, $\tilde{u} \in U(K)$ is expressed as a finite sum of elements in $Y^{r} \otimes Y^{l}$, so we don't need all of $\operatorname{Hom}\left(X_{i}, X_{j}\right)$-we can pull out the finitely generated parts of $\operatorname{Hom}\left(X_{i}, X_{j}\right)$ that contribute to \tilde{u}.

Remark 1. What we've actually shown is not a commutative diagram $[\underline{K} \rightarrow U \rightarrow \underline{K}$ commuting with id : $\underline{K} \rightarrow \underline{K}]$ in $\mathscr{C}^{o p}-M o d$, but rather a diagram $[\underline{K} \rightarrow U \rightarrow K$ commuting with id : $\underline{K} \rightarrow K]$ in $H^{\bullet} \mathscr{C}^{o p}-M o d$, which has the same objects as $\mathscr{C}^{o p}-\operatorname{Mod}=F u n_{A_{\infty}}\left(\mathscr{C}^{o p}\right.$, Chain $\left._{\mathbb{Z}}\right)$ but has morphisms

$$
\operatorname{Hom}_{H} \bullet(F, G):=\oplus_{n} H^{n} \operatorname{Hom}_{\mathscr{C}^{o p}-M o d}(F, G)
$$

So we really exhibited \underline{K} as in some idempotent completion of the H^{\bullet} category. But a special property of idempotents is that they always lift to honest A_{∞} idempotents in the A_{∞} category (not the H^{\bullet} category). This is a special kind of colimit that commutes with passing to the H^{\bullet} category.

How does Abouzaid use this lemma? Fix some object $B \in P W F u k$ that we suspect to be a generator, or more generally, $\mathscr{B} \subset P W F u k=\mathscr{C}$. There's a geometric criterion for when

$$
Y_{K}^{r} \otimes_{\mathscr{B}} Y_{K}^{l} \rightarrow \operatorname{Hom}(K, K)
$$

hits the unit of K for any $K \in o b(\mathscr{C})$. This goes through the "symplectic (co)homology", which is an invariant of the symplectic manifold M. The main geometric result is that the following diagram commutes (write $H H(B)$ for the Hochschild homology).

So if $H H(B) \rightarrow S H(M) \rightarrow \operatorname{End}(K)$ hits the unit, we know B split-generates a category containing K.

Claim: when Q is spin, and $L=T_{q}^{\vee} Q \subset T^{\vee} Q$, then for all $K \in \operatorname{PWFuk}\left(T^{\vee} Q\right), Y_{K}^{r} \otimes_{L}$ $Y_{K}^{l} \rightarrow \operatorname{End}(K)$ hits the unit. Consequently, when Q is spin,

$$
D^{\pi} W F u k\left(T^{\vee} Q\right) \cong \operatorname{End}\left(T_{q}^{\vee} Q\right)-M o d \cong D^{\pi}\left(T_{q}^{\vee} Q\right)
$$

where in the last term, $T_{q}^{\vee} Q$ is acted on by $\operatorname{End}\left(T_{q}^{\vee} Q\right)$.
Theorem 1.2 (Abouzaid). When Q is spin, $\operatorname{End}^{\bullet}\left(T_{q}^{\vee} Q\right) \cong C \cdot \Omega Q$, where ΩQ is the space of loops based at q, that is,

$$
\{\gamma:[0,1] \rightarrow Q \mid \gamma(0)=\gamma(1)=q\} .
$$

Remark 2. In this case, the symplectic topology of $T^{\vee} Q$ reduces totally to algebraic topology.
Note that we have

$$
\begin{gathered}
\Omega Q \times \Omega Q \rightarrow \Omega Q \\
(\gamma, \tilde{\gamma}) \mapsto \tilde{\gamma} \cup_{q} \gamma
\end{gathered}
$$

Also, one can convert a homology chain to a cohomology chain by $A_{\bullet} \mapsto A^{-\bullet}$.
This tension between cohomology and homology objects is not so rare. For example, let R be a smooth commutative ring over a perfect field k.

Theorem 1.3 (Hochschild-Kostant-Rosenberg).

$$
H H_{\bullet}(R) \cong \Omega_{R / k}^{\bullet}
$$

Exercise 1.1. Check what we've said with our example $Q=S^{1}$.

