
LECTURE 28

Introduction to ∞-categories

Though I prefer hand-written notes, I’m typing this up in case it’s a helpful
resource.

I’ve been agnostic in this class about what I mean when I say “(∞, 1)-
category.” To put grumblings to rest, I’ll just specify a single model of (∞, 1)-
category that I like, called ∞-categories. This terminology is due to Lurie—
synonyms include quasi-categories and weak Kan complexes.

Just to give you a road map: An (∞, 1)-category is supposed to capture
two ideas at once:

(1) The idea that two objects can have a space, and not just a set, of
morphisms between them. A good example is the category of topo-
logical spaces—here, the set of continuous functions from X to Y can
actually be given a topology.

(2) Sometimes, composition of morphisms is not uniquely defined, and
associativity of composition does not hold on the nose, but only up to
homotopy. We’ve seen an example in this class via Fukaya categories.
Another example is the category of points on X whose morphisms are
curves on X.

This second idea (2) is usually the one least palpable to newcomers. Don’t be
afraid, as you’ve seen an instance of this before: The fundamental group. We
are content to define π1(X, x) by simply declaring two loops to be equivalent
if they are homotopic. The main motivation behind imposing such an equiv-
alence relation is to make composition of loops associative. The drawback, of
course, is that you’ve modded out by homotopies—modding out, by its very
nature, loses information. One can instead preserve this information, but at
the cost of living in a world where associativity need not hold on the nose, and
only up to homotopy.

In my class, I use the term (∞, 1)-category to mean anything that cap-
tures these two notions. However, when I say “∞-category,” I mean the very
specific model that I give in Definition 28.18. Yes, the only difference is the
parentheses, and the number 1.
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Remark 28.1. Unless otherwise stated, when I say “category,” I really mean
category, in the sense of Mac Lane. So the three terms

category ∞-category (∞, 1)-category

all mean different things in this note. I will not mathematically define the last
term.

Remark 28.2. This is a long document. I’m amazed I covered all this in
one hour.

Remark 28.3. The content of these notes are probably equivalent to 1.1.2
of Lurie’s Higher Topos Theory. However, the theory of ∞-categories was first
developed by Joyal under the name quasi-categories.

1. Preliminaries

1.1. The category ∆.

Definition 28.4. Let ∆ be the category of non-empty finite, linearly ordered
sets. To be precise:

(1) An object of ∆ is a finite, non-empty set with a linear poset structure.
An example is the set {0, 1, . . . , n} with the ordering

0 ≤ 1 ≤ 2 ≤ . . . ≤ n.

This particular object is denoted [n]. As an example, [0] is a poset
with one element.

(2) A morphism from I to J is a map of posets. That is, a function
f : I → J such that

i ≤ i
� =⇒ f(i) ≤ f(i�).

Such an f is also called a weakly order-preserving map.

Remark 28.5. Any object of ∆ is uniquely isomorphic to the object [n] for
some n. So the functor out of ∆ is determined, up to natural isomorphism, by
what it does on the [n].

Example 28.6. The most important kinds of morphisms are the following
two:

• The injective maps δi : [n] → [n+ 1] skipping the element i ∈ [n+ 1].
There are (n+ 1) of these. These are called fact maps.

• The surjective maps σi : [n] → [n− 1] which send i and i+ 1 ∈ [n] to
the same element, i ∈ [n − 1]. There are (n − 1) of these. These are
called degeneracy maps.

26



You can check that any morphism f : [n] → [m] can be factored as a compo-
sition of these basic kinds of maps.

Remark 28.7. As we’ll see, this category is a simple way of capturing the
combinatorics of k-simplices for all k at once. For a mysterious reason, this
category has proven ridiculously useful in all kinds of topology—not just for
the theory of higher categories.

1.2. Simplicial sets. Every example in this section is important, and
will be used immediately.

Definition 28.8. A simplicial set is a functor

∆op → Sets.

Given a simplicial set X, we will denote X([i]) by Xi. The functions induced
by δi, σi will be denoted di, si, respectively.

A map, or morphism, from one simplicial set to another is a natural trans-
formation.

Example 28.9 (Simplices). A basic example is the representable functor

∆n : ∆op → Sets, [i] �→ hom∆([i], [n]).

As an example, ∆0 is the constant functor: It sends every [i] to a one-element
set.

∆1 is more interesting: It sends [0] to a two-element set. [1] is sent to a
three-element set. How are these two sets related in terms of the maps δi and
si from above?

Keep going for ∆n. Convince yourself that there is a single element of
∆n([n]) whose di maps make it look a lot like the n-simplex.

Example 28.10 (An important opposite example). This is just for set-up.
Note that there is a functor

∆ → Spaces

sending [n] to ∆n ⊂ Rn+1. This ∆n (note it’s missing an underline) is the set

{(t0, t1, . . . , tn) |
�

ti = 1, ti ≥ 0}.

Any map f : [n] → [m] induces a continuous map ∆n → ∆m by

(t0, . . . , tn) �→ (s0, . . . , sm), sj =
�

i∈f−1(j)

ti.

The empty summation equals zero.
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Example 28.11 (The singular complex). Note that any functor C → D is
the same information as a functor Cop → Dop so the above example gives a
functor

∆op → Spacesop.

Well, any topological space X defines a functor

homSpaces(−, X) : Spacesop → Sets

where homSpaces is the set of continuous maps. Taking the composite, we find
a functor

X : ∆op → Sets, [i] �→ homSpaces(∆
i
, X)

which we call the singular complex of X. It’s a very important simplicial
set. For instance, by taking the free Abelian groups on X i and taking the
alternating sum of the maps induced by the di, one obtains the singular chain
complex computing the homology groups of X.

Example 28.12 (Another opposite example). Note that any poset P de-
termines a category: Its objects are elements p ∈ P , and hom(p, q) is empty
when p �≤ q, while hom(p, q) is a singleton set if p ≤ q. Composition is forced
upon us, and everything works out by the definition of poset.

Then we have a functor

∆ → Cat

to the category of categories. It sends [i] to the category associated to the
poset [i]. Any map of posets induces a functor. Details are left to the reader.

Example 28.13 (The nerve of a category). Let C be a small category (so
its objects form a set, and its morphisms form a set). Define a simplicial set

N(C) : ∆op → Sets

by taking

[i] �→ Fun([i], C).

This is the set of all functors from [i] to C. By abuse of notation begun above,
we are using [i] to denote both a poset and the associated category.

Parsing the definitions, one can see that

(0) N(C)0 = N(C)([0]) is the set of objects of C.
(1) N(C)1 is the set of all morphisms of C. The maps d0, d1 : [0] → [1]

induce maps N(C)1 → N(C0) sending each morphism to its target and
source, respectively.
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(2) N(C)2 is the set of all commutative triangles

X0
f

��

h

���
��

��
��

�
X1

g
����

��
��

��

X2

in C. Given such a triangle T , the face maps di act by

d0T = g d1T = h d2T = f

(3) More generally, N(C)n is the set of all commutative diagrams in the
shape of an n-simplex.

Finally, the degeneracy maps si : N(C)n → N(C)n+1 act by inserting an iden-
tity morphism at the ith object. In particular, the map s0 : N(C)0 → N(C)1
assigns to each object its identity morphism.

2. Categories as simplicial sets

We build on the nerve example from above.

Definition 28.14. Let Λn
i be the simplicial set obtained from ∆n by deleting

the face opposite the ith vertex (and the interior of ∆n). If 0 < i < n, Λn
i is

called an inner horn.

If you like, you can define Λn
i as the functor ∆op → Sets obtained by taking

the colimit of the functors ∆n−1, glued along the functors ∆n−2 via the gluing
maps suggested by the geometric description above. Here are pictures of the
horns Λ2

0,Λ
2
1,Λ

2
2 in that order:

2

0 ��

���������
1

2

0 �� 1

���������

2

0

���������
1.

����������

Proposition 28.15. Fix C a small category. Then for any 0 < i < n,
and any map f : Λn

i → N(C), there exists a unique dotted map making the
following diagram commute:

Λn
i

f
��

��

N(C)

∆n

���
�

�
�
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Remark 28.16. If you draw this out for n = 2, this just means that any
pair of morphisms X0 → X1 and X1 → X2 can be uniquely composed. For
n = 3, you’ll find associativity. More concretely in the n = 2 case, what does
it mean to be able to find a dotted arrow given a map f? Well, if i = 0, 1, 2,
the map f determines diagrams

X2

X0
��

����������
X1

X2

X0
�� X1

����������

X2

X0

����������
X1.

����������

respectively. The existence of the dotted arrow means these morphisms can
be completed to a commutative triangle. Of course, for i = 0, 2, being able to
fill any f amounts to finding right and left inverses to any morphism.

Proposition 28.17. There is an equivalence of categories between

(1) Simplicial sets with unique inner-horn fillings,
(2) small categories.

Proof. From (2) to (1) is the nerve construction. The opposite direction
is given by declaring X0 to be the objects of a category, and morphisms from x

to y to be those elements ofX1 with d1 = x, d0 = y. You can define composition
via the 1st face of the unique 2-simplex filling Λ2

1, and so forth. You can fill
in the details. �

3. ∞-categories

So we can completely capture categories in terms of simplicial sets. Going
all the way back to the opening remarks of this lecture, one should imagine an
∞-category to be something where the inner horn cannot be filled uniquely,
but just filled. (So that compositions exist, though they may not be uniquely
determined.) That’s exactly what we’ll do.

Definition 28.18. An ∞-category, or weak Kan complex, or quasi-category,
is a simplicial set C such that for any morphism f : Λn

i → C with 0 < i < n,
there exists a dotted arrow making the diagram

Λn
i

��

g
�� C

∆n

���
�

�
�

commute.
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Now, the category of simplicial sets is enriched over itself. Namely, given
two simplicial sets X, Y , one can define a simplicial set

hom(X, Y )

by setting
hom(X, Y )i := NatTrans(X ×∆i

, Y )

where the product simplicial set X ×∆i is defined using the fact that one can
take products of sets. So the righthand side is the set of natural transforma-
tions.

Definition 28.19. Let C,D be ∞-categories. A functor from C to D is just
a natural transformation from C to D. The simplicial set of functors from C
to D is the simplicial set

hom(C,D)

as defined just now. We will write

Fun(C,D) := hom(C,D)

to emphasize the word “functor.”

4. Why this model?

I was asked why this model is a good one for (∞, 1)-categories. I will give
a few answers:

(1) We have the desirable property (which I haven’t proved) that Fun(C,D)
is again an ∞-category. This isn’t so obvious to model or prove
in other models. Moreover, one can prove that Fun(C × D, E) �
Fun(C, Fun(D, E)), which is quite easy.

(2) One has easy Grothendieck constructions. A Grothendieck construc-
tion is akin to a classifying space construction: A map f : X → BG

is the same thing as a G-bundle, so one would like to construct the
G-bundle out of the data of f . Likewise, a functor F : C → Sets of
ordinary categories allows one to construct a category C̃ → C whose
fiber at X is the set F (X). The C̃ is called the Grothendieck construc-
tion. In our setting, any functor C → Spaces determines a C̃ → C.
Lurie calls this (un)straightening in Higher Topos Theory.

There is only one thing I dislike about this model. It is the fact that we
need degeneracy maps—i.e., we need to say what the si do. For instance, we
must specify a map

s0 : C0 → C1
i.e., we must pick out a unit for any object X ∈ C0. This is a pain, and
somewhat unnatural. For instance, in the Fukaya category, you would never

31



consider “specifying a unit” as part of the data you need to define the Fukaya
category.

Another complaint you might have about this model is that it doesn’t
generalize easily to define (∞, 2)-categories, but this isn’t such a concern for
me. There are plenty of theorems to prove in the (∞, 1)-realm, and we don’t
have so many examples of (∞, 2)-categories yet for which we want to develop
theories we couldn’t prove using (∞, 1)-language.

Finally, just for reference, some other models for (∞, 1)-categories are:

• Complete Segal spaces (which do have more straightforward general-
izations to define (∞, n)-categories for n ≥ 2),

• Topologically enriched categories
• Simplicially enriched categories
• Simplicial/combinatorial model categories.
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