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1 Morse Theory from Floer-ish Prospective

Definition 1. Let M be a compact manifold, and g a generic metric on M. A function f : M — R is Morse
if Hessf is nondegenerate at critical points.
For any critical point p € M of f, the index of p is the number of negative eigenvalues of Hessf.

Definition 2. (Morse homology)
For each n > 0, let C,, be the free abelian group generated by the critical points of index n.
The boundary map 9, : C,, — C),,_1 takes p — > . #(gradient flow lines from p to ¢) - g.

Some concerns for well-definition:

1.

4.

#(flow lines) is finite. Morse-Smale condition: f is Morse, flow lines intersect transversely. Then show
the moduli space of flow lines is compact.

0? = 0. Here, consider flow lines from index npoint p to an index n — 2 point g. A 1-parameter family
of flow lines converges to either a flow line p to ¢, or a broken flow line (concatenation of flow line
from index n to n — 1 to n — 2). We need to show that only broken flow lines are the limits, and that
the two broken flow lines bounding the 1-dimensional family of flow lines are distinct. It suffices to
argue that for each broken flow line, there is a unique way to deform it to a smooth trajectory. We use
a technical gluing property.

Homology is independent of our choice of metric. Cobordism argument, construct isomorphism
between chains.

Homology is independent of choice of Morse function f.

Remark. Recall a Morse function for M gives a CW-decomposition. Each n-cell is the descending manifold
for an index n critical point. This approach does not generalize to the infinite case.

2 Floer Theory

Here we use Hamiltonian Floer theory as an example.

Let (M, w) be a symplectic manifold, H (t) a time-dependent Hamiltonian function. Each H(¢) : M — R.
(Consider H(t) 1-periodic.)

Define X g (t) such that ix,, 4w = dH(t).

2.1

Arnold Conjecture

How do we count period 1 orbits of the Hamiltonian vector field X (¢) on M?

Suppose H(t) were independent of ¢ and Morse, then Xy = 0 at critical points. Hence every critical
point of H gives a period 1 orbit. By the Morse inequality, this implies that the number of period 1 orbits is
> the sum of the Betti numbers (coming from Morse homology).



Conjecture For general H(t), if all period 1 orbits are nondegenerate (nonstationary), then # orbits > > b;.

This was Floer’s motivation for defining his theory.

2.2 Floer’s approach

Assume (M) = 0. Consider the infinite-dimensional space Map,(S*, M), and a functional

Ag s Map(S*, M) — R

AH(:U)—/Du*w+/OlHt(x(t))dt

where u : D — M is a map of a disk to M.

Then z is a critical point of Ag iff « is a period 1-orbit.

Floer generalized Morse theory to be used on (Mapo(S', M), Ax), to obtain a Morse inequality giving
a lower bound on the number of orbits.

Issues:

1. We want to understand Map,(S*, M) as a Banach manifold structure (for Fredholm theory later). Use
Sobolev spaces to make all the spaces Banach manifold with Ag smooth.

2. The gradient flow lines will not be unique; we get PDEs. We look at the PDEs directly. Here, the “flow
lines” are J-holomorphic cylinders S* x R — M (satisfying an equation whose first order term is 9).

. The compactness issue is understood via Gromov’s compactness package.
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4. Nondegeneracy of critical points.

5. Gluing argument. Again, technical analysis to confirm that trajectories are not double-counted.
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. (When dim M > 8) Regularity of moduli space trajectories; they need to be cut up by transverse maps.

There is a map Map(S* x R, M) — V whose first order term is 0. Here V is an infinite rank vector
bundle over the infinite dimensional space Map(S! x R, M), with fibers Q%!(S! x R, u*(TM)). It turns out
the solutions to the PDE is the pullback by this map of the zero section of V.

The tangent map of F' projected to the fiber direction gives a Fredholm operator, whose index can be
computed by Riemann-Roch. In general, this operator need not be surjective; in this case, the zero-section
of V is not regular. We need to perturb our equation.

2.3 Freed-Uhlenbeck

Consider a Banach space P serving as a perturbation space. Suppose we could extend our fibers F' to
F:Px Map,(§' xR, M) =V

(P,p) = Opp + ...

Suppose P is large enough such that 7 ;pers o F' has a surjective tangent map. Let S = F~'( 0 section )
is an infinite dimensional submanifold of P x Map, (S* x R, M). Now project S to P. There exists py € P
such that 7= (po) is regular. Then the solution of 9, ! is going to be 7! (po), which is regular.

Problems with this approach:

1. Need S* x R to be somewhere injective.
2. Then we don’t want to perturb our J-holomorphic structure when M is Kahler.

3. If M has symmetry, we want our perturbations to be equivariant. (For example, branched covers.)



