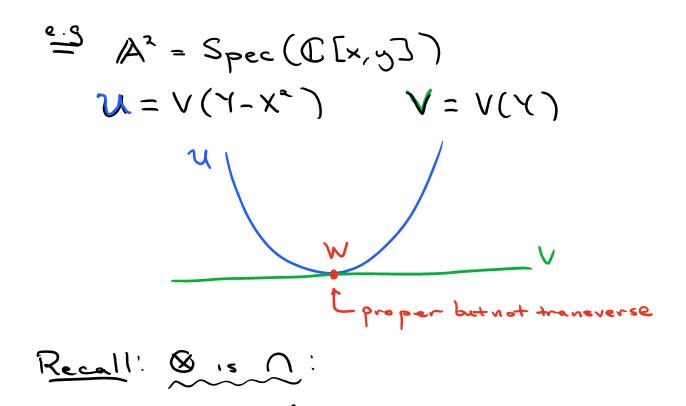
DGFT Lecture 2 - Tor; Serre's intersection formula

Friday, September 30, 2016 2:03 PM

$$\begin{pmatrix} Melissa Zhang speaking \end{pmatrix} \\ X = ambient space \\ U, V \subset X \\ W = U \cap V \\ \end{cases}$$



For
$$\mathcal{U}, \mathcal{V} \subset \mathcal{A}^{n}$$

 $R = \mathbb{C}[\mathcal{A}^{n}]$
 $I := \mathcal{I}(\mathcal{U}), \quad J = \mathcal{I}(\mathcal{V})$
 $\mathcal{U} \cap \mathcal{V} = \{p \in \text{Spec } \mathbb{R} \mid p > J, p > J\}$
 $\cong \text{Spec}(\mathbb{R}/I+J)$
 $\cong \text{Spec}(\mathbb{R}/I+J)$

Review: Tor

$$R = commutative ring with 1$$

 $A, M = R - module$
 $- \otimes_R A$ is right exact
Tor \leftarrow Left-derived functor
i.e. to compute Tor. (A, M)
1. Projective resolution
 $\dots \rightarrow P_1 \rightarrow P_0 \rightarrow 0$
2. Apply $A\otimes_R -$
 $\dots \rightarrow A\otimes_R P_1 \rightarrow A\otimes_R P_0 \rightarrow 0$
3. Take homology

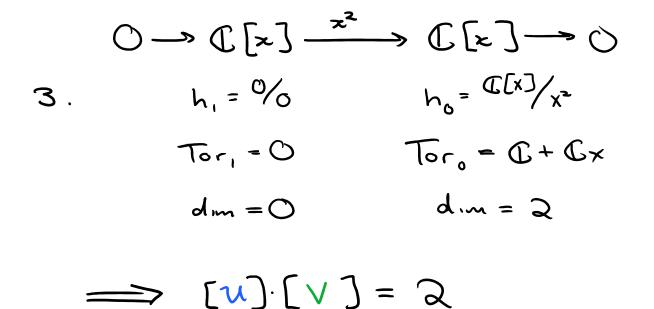
•

dmX, i. Δ/Λ , Λ/Λ

Then

$$\chi = \sum_{i=0}^{dm} (-1)^{i} l_{A} \operatorname{Tor}_{i}^{A} (A_{p_{R}}, A_{p_{V}})$$
(when $W = pt$:

$$\chi = \sum_{i=0}^{dm} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$$
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$))
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname{Tor}_{i}^{R} (B_{p_{R}}, B_{p_{V}})$)))
(Thus $X = \sum_{i=0}^{R} (-1)^{i} d_{im_{C}} \operatorname$



Had a discussion about trying to find an example where higher Tor groups not all zero, but couldn't find one.