Friday, October 21, 2016 2:04 PM

(Jake Mc Namara, ctd.)

Recall: Implicit Atlas for X = Hausdorff space

- · A = Index set
- · XI = Hausdorff Space >>> thickening
- · Ez = f.d. v.space >>> obstruction
- · Sa: XI > Ea >>> Kuranishi maps
- · UIJ C XI ~ footprints
- · YII: (S=1 |x2) (O) ~ UII ~ footprint
- · XI = = XI regular locus

satisfying

- · Compatibility
- · submersion

Sover Y== (X==) = X==

Over Y== (X==) = X==

Over Y== (X==) = X===

Over Y== (X==) = X====

· Covering

EXAMPLES:

and

n = virtual dimension S_{*} locally $\mathbb{R}^{n} \longrightarrow \mathbb{O}$

(I) Smooth mfld X" with atlas {Ux}] LEA

$$X_{I} = \bigcap_{\alpha \in I} U_{\alpha}$$
, $E_{\alpha} = 0$
 $S_{\alpha} = 0$, $U_{IJ} = X_{J} \subset X_{I}$

Remark: Say X=*, A=*

$$X_{*} = \mathbb{R}$$

 $E_{*} = \mathbb{R}$

$$5_{\star}: X_{\star} \longrightarrow E_{\star}$$

=> submersion axiom for sx checked over \$

Renembers g<u>crm</u> Notjust co-jet

2) Zero locus of section of v.bundle:

Choose
$$\hat{F}$$
 smooth v.b.

 $X := 6^{-1}(0)$
 $X := 6^{-1}(0)$

Choose \hat{F} s.t. $F \oplus \hat{F} = trivial bundle$
 $X_{\alpha} = X$
 $X_{\alpha} = X$

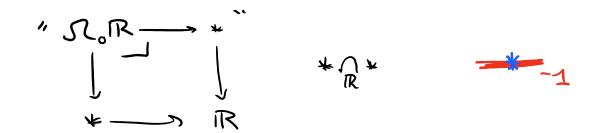
Example:
$$V(x^n)$$
 $X_a = \mathbb{R}$, $E_a = \mathbb{R}$, $S_{\alpha}(x) = x^n$

Spec $(\mathbb{R}^{(x3)}/_{x^n})$

VFC = 1

degree n thickening

Example:
$$\Omega_0 \mathbb{R}$$
, $X_a = *$, $E_a = \mathbb{R}$
 $S_a : * \mapsto 0$

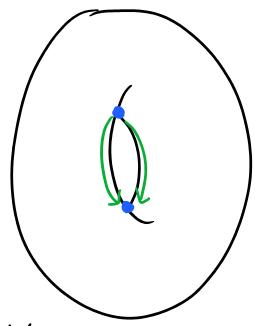


Generally, for $x_0 \in X$, can form $\int_{X_0} X$ $X_{\alpha} = \{x_0\}$, $E_{\alpha} = T_{x_0}X$, $S_{\alpha} = 0$

Example: O-locus of O-section of Möbius

thickening direction

Picture for Morse homology



don't tilt

X = * *

the two flow lines

Take
$$X_{\alpha} = * *$$
 $E_{\alpha} = \mathbb{R}$
 $S_{\alpha} = 0$

i.e. 1-parameter family of perturbations where flow lines only exists at one point

Kemark: Only using 1-parameter family of perturbations. Needs analytic machinery to show this is OK. (Doesn't take into account all perturbations)