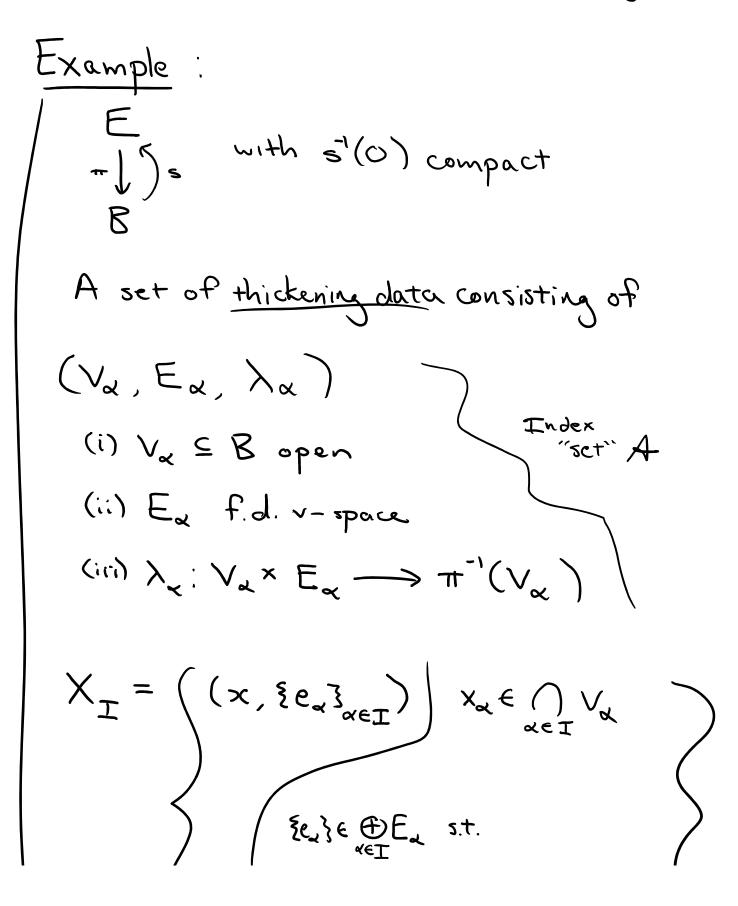
DGFT Lecture 5 - Implicit Atlases II

Friday, October 28, 2016 2:10 PM



$$\begin{cases} \int \xi_{\alpha} \xi \in \bigoplus_{x \in I} \xi_{\alpha} \text{ s.t.} \\ (s(x) + \sum_{\alpha \in I} \lambda_{\alpha}(x, e_{\alpha}) = 0) \\ T = \text{Hickaned section} \end{cases}$$

Kuranishi maps
$$S_{\alpha} : X_{I} \longrightarrow E_{\alpha}$$

$$Projection \text{ to } E_{\alpha}$$

Footprint
$$\mathcal{U}_{IJ} \subseteq X_{I} \quad \text{when } I \in J$$

$$Iocus \quad \text{where } xc \in \bigcap_{\alpha \in J} V_{\alpha}$$

Footprint Maps
$$\mathcal{U}_{IJ} : (S_{J \setminus I} |_{X_{J}})(0) \longrightarrow \mathcal{U}_{IJ}$$

$$forgetting e_{\alpha} \text{ for } \alpha \in J \setminus I$$

Rmks: - This atlas is essentially canonical.

•
$$X_{I}^{m} \not\subseteq X_{I}$$

$$\frac{I}{Sotropy}:$$
Prototypical example:
Smooth orbifold
has open over $\{X_{\alpha}|_{\Gamma_{\alpha}} =: V_{\alpha} \subseteq X\}_{\alpha \in A}$
where X_{α} smooth unflok and $\Gamma_{\alpha} = finite groups$
For $I = \{x_{1}, ..., x_{n}\} \in A$
 $X_{I} = X_{\alpha} \times \cdots \times X_{\alpha}$
"Orbifold fiber product"
 $\Gamma_{I} = \Gamma_{\alpha_{1}} \times \cdots \times \Gamma_{\alpha_{n}}$

$$L_{I} = L_{\alpha_{1}} \times \dots \times L_{\alpha_{n}}^{*}$$

acts smoothly on X_{I}
$$X_{I} / \Gamma_{I} = V_{\alpha_{1}} \cap \dots \cap V_{\alpha_{n}} \subseteq X$$

This gives implicit atlas w/ isotropy
where all E_{α} are zero.

Defn: An implicit at las of volum d
on X a Hausdorff space is
Data
(a)
$$A = index$$
 set
(i) Covering groups
 $\Gamma_x = finite gp, x \in A$
 $\Gamma_I = \prod_{x \in I} \Gamma_x, |I| < \infty$

(.i)
$$E_{\alpha}$$
 f. generated $R[\Gamma_{\alpha}]$ -modules
 $(E_{I} = \bigoplus_{\alpha \in I} E_{\alpha})$
(iii) Γ_{I} -space X_{I} Hausdorff,
 $X \longrightarrow X_{\alpha}$
(iv) (Kurenishi maps)
 $\Gamma_{\alpha}^{-} equivariant$
 $S_{\alpha} \colon X_{I} \longrightarrow E_{\alpha}$
 $\forall \alpha \in I \stackrel{f_{n}}{=} A$
(for $I \subseteq J$, $S_{I} = \bigoplus_{\alpha \in I} S_{\alpha} \colon X_{J} \rightarrow E_{I}$)
(v) (Footprint S)
 $\Gamma_{I}^{-} equivariant$
 (vi) (Footprint Maps)
 $\Gamma_{J}^{-} equivariant$
 $Y_{IJ} \colon (S_{J \setminus I} | X_{J})^{-1}(0) \longrightarrow U_{IJ}$
(vii) (Regular Locus)
 $\Gamma_{I}^{-} invt \quad X_{I}^{reg} \subseteq X_{I}$

L'I- mut
$$X_{I}^{s} \subseteq X_{I}$$

satisfying
Axions
(i)-(ii)Same compatibility conditions
as old definition
(v) (Homeo^M axiom)
 Y_{IJ} induces homeo^M
 $(S_{J \setminus I} | X_{J}^{-1}(0) / I_{J \setminus I} \rightarrow U_{IJ}$
(vi) $Y_{-1}^{-1} (X_{IG}^{reg}) \subseteq X_{IG}^{reg}$
(vii) $I_{J \setminus I}$ acts freely on $\Psi_{-1}^{-1} (X_{IG}^{reg})$
(vii) $X_{IG} \subseteq X_{I}$ open
(ii) Same submersion (covering axioms

•
$$S_{II}$$
 acts smoothly on X_{IS}^{res}
• $S_{J\setminus I}: X_{J} \rightarrow E_{J\setminus II}$ smooth submersion
over $Y_{IS}^{-1}(X_{IS}^{res})$
• Y_{IJ} local diffeom over $Y_{IJ}^{-1}(X_{IS}^{res})$

Also,
Version with boundary

$$X = compact Hausdorff$$

 $\partial X \subseteq X$ closed
Then same data, but with I_{T} -invt
closed subsets $\partial X_{I} \leq X_{I}$
 $\partial X_{G} = \partial X$
and with
 $\Psi_{IJ}^{-1}(\partial X_{I}) = (S_{J} \setminus I | \partial X_{J})^{-1}(O)$
and

want to allow local model $\mathbb{R}^{\circ} \times \mathbb{R}^{d + \dim \mathcal{E}_{L}^{-1}} \times \mathbb{R}^{\dim \mathcal{E}_{J \setminus I}} \longrightarrow \mathbb{R}^{d \cdot m \mathcal{E}_{J \setminus I}}$ Nodal J-holo genus O es with O marked _xample: Pts in homology class B $M_{o,o}(X, B)$ want to assume in addition when we add ra > 2 merked points, covering group just Sra Basic construction similar: Index set (ra, Da, X, Ez) with (i) va>2 integer (ii)Dy smooth codim 2 submfld w/ bdry (iii) f.d. IR[S.]-modules Ex $(``) \lambda_{z} : E \to \mathcal{C}^{\infty} (= X \Lambda)$

 $(iv) \lambda_{z} : E_{z} \to C^{\infty} \left(\overline{\mathcal{C}}_{\mathcal{O}, \mathcal{C}_{a}} \times X, \mathcal{S}_{\overline{\mathcal{C}}_{o}, \mathcal{C}_{a}}^{o, 1} \right)$ \sum_{k} Supported away from nodes and marked pts Thickenings · Moro (X,B) consists of • u: C > X nodal, genus O s.t. for $\alpha \in I$, $u \wedge D_{\alpha}$, $\# u'(D_{\alpha}) = r_{\alpha}$ (v'(D), require transversality away) · Elements ed EE VaEI Labellings of u'(Da) by {1,...,ra} Satisfy Thickened Jegn $\overline{\partial}u + \sum_{\alpha \in I} \lambda_{\alpha}(e_{\alpha}) (\not P_{\alpha}, u) = 0$ $\phi_{\alpha}: C \longrightarrow C_{o, r_{\alpha}}$

Most axioms easy to check.

Hard part : submersion axioms near nodes