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0 A short intro to virtual fundamental classes
In order to define virtual fundamental classes (VFCs) over the lectures following
this one, we need some results from homological algebra. This talk is essentially
part of the background required to understand the VFC package. So as not to lose
sight of the goal, let us start with a quick discussion of this package, and where
we are headed.

The idea, at its most fundamental level (forgetting about orientation sheaves
and relative versions), is the following. Associated to an implicit atlas (X,A),
we will associate, over a ground ring R (we’ll usually take Z), a chain complex,
C•vir(X,A), which comes with natural maps

C•vir(X,A)→ Cd+dimEI−•(EI , EI \ 0) = R[−d]

for any finite I . On homology, this map will not depend on the choice of I . In the
case of A = {α}, this map is literally just the pushforward of the Kuranishi map

(sα)∗ : C
•
vir(X, {α}) := Cd+dimEα−•(X

reg
α , Xreg

α \X)→ Cd+dimEα−•(Eα, Eα\0).

Our algebraic machinery will then let us apply some sort of Poincaré duality so
that the virtual cochain complex is quasi-isomorphic to Čech cohomology, and
hence we obtain a map

Ȟ•(X)→ R[−d],

from which it follows that the virtual fundamental class lies in some sort of dual
of Čech cohomology.

As a quick justification for why we might want to use Čech (co)homology
as opposed to singular (co)homology, we consider the case of the Warsaw circle
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sitting in R2, carved out by the zero set of a function s which is negative on the
interior and positive on the exterior. This is an implicit atlas of vdim 1, and we
see that we expect a perturbation of s to still have zero set which winds around
the annulus once, so the VFC should be nonzero. However, if the VFC were to
lie in singular homology, then it would have to be zero! On the other hand, Čech
homology is non-trivial. There will also be a brief comment on further justification
for the choice of Čech (co)homology later.

The main key, then, is some sort of Poincaré-Lefschetz duality. We want that
C•vir(X,A) is quasi-isomorphic to Č•(X) (twisted by the orientation sheaf). The
virtual chain complex, in turn, will be shown to have the structure of a so-called
pure homotopy K-sheaf.

A final piece of notation - any space in what follows should be assumed to be
a locally Hausdorff space. We shall simply say space from now on.

1 Čech cohomology for sheaves
Consider some space X , together with some open cover U = {Uα}α∈A of X . One
can then form a simplicial set, called the nerve of the covering, N (U). Recall
that a simplicial set consists of a collection of Z≥0-indexed sets together with face
and degeneracy maps between them satisfying certain properties. For k ≥ 0, we
therefore define

N (U)k :=
∐

α0,...,αk∈A

(Uα0 ∩ Uα1 ∩ · · · ∩ Uαk)

The face maps are given by the possible inclusions from when an index is dropped,
and the degeneracy maps are the isomorphisms from when an index is doubled.
Suppressing the degeneracy maps, and using Uα0···αk := Uα0 ∩ Uα1 ∩ · · · ∩ Uαk ,
our simplicial set is:

· · ·
∐

Uα0α1α2

→
→
→

∐
Uα0α1 ⇒

∐
Uα0

Heuristically speaking, one expects that as we take finer and finer refinements,
the nerve essentially encodes all of the homotopy-theoretic information of X . In
fact, if U is a “good” open cover, meaning all intersections ofUα’s are either empty
or contractible, then the geometric realization |N (U)| recovers X up to homotopy
equivalence, provided that X is either paracompact or U is locally finite.

Recall now the following definitions:
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Definition 1.1. A presheaf on a space X is a contravariant functor from the cat-
egory of open sets of X (with inclusion morphisms) to the category of abelian
groups (or any abelian category, if we’d prefer to think of R-modules instead of
Z-modules, for example). For an open subset U ⊆ X , and a presheaf F on X ,
elements of the group F(U) are called sections. Morphisms of presheaves are
natural transformations.

Definition 1.2. A sheaf on a space X is a presheaf such that for any collection
{Uα}α∈A of open subsets of X , the diagram

0→ F (∪αUα)→
∏
α∈A

F(Uα)→
∏
α,β∈A

F(Uα ∩ Uβ)

is exact, where the last arrow is the difference between the two restrictions.

To draw out the meaning of exactness in the above diagram a little more
clearly, a sheaf satisfies the conditions that:

• If there are sections sα ∈ F(Uα) such that the restrictions of sα and sβ to
Uαβ are equal for each α, β, then there is some global section s ∈ F(∪αUα).

• If the restriction of a section s ∈ F(∪αUα) to each F(Uα) is zero, then s is
zero. (This is equivalent to requiring uniqueness of the global section s in
the previous bullet point.)

To any presheaf F , we can associate a Čech cohomology as follows. As a first
step, for a fixed open cover U , apply F to the Čech nerve considered with its face
maps. This yields a diagram

0→
∏
F(Uα) ⇒

∏
F(Uαβ)

→
→
→

∏
F(Uαβγ) · · ·

Taking the alternating sum of the face maps. This yields a single cochain complex

0→
∏
F(Uα)→

∏
F(Uαβ)→

∏
F(Uαβγ)→ · · ·

Definition 1.3. The Čech cohomology of U with values in F , notated Ȟ•(U ,F),
is the cohomology of the above cochain complex.

If V is a refinement of U , then there is a natural map Ȟ(U ,F) → Ȟ(V ,F).
This leads to the following definition:
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Definition 1.4. The Čech cohomology of X is

Ȟ•(X,F) = lim−→
U
Ȟ(U ,F).

Remark. Note that for any choice of open cover, the zeroth Čech cohomology is
just the space of global sections, and that refinement yields isomorphisms on this
group. Therefore,

Ȟ0(X,F) = F(X).

Let us now provide some brief justification as to why we might care about
Čech cohomology in our foray into VFCs.

• As alluded to above, the nerve of U is a pretty good combinatorial model for
X , and is the most natural way of encoding the topology ofX as a simplicial
set. Our definition of Čech cohomology makes it clear that our cohomology
really only depends on how F depends on this homotopical model for X .

• There is a purely derived geometric approach to defining a cohomology for
a sheaf. In particular, the functor from sheaves to abelian groups given by
taking global sections is left exact, and there are enough injective sheaves
to define the right derived functors of this global section functor, which are
the sheaf cohomology functors H i(X, •). Leray’s theorem states that if we
choose our open cover U such that sheaf cohomology on a given sheaf F
vanishes on all finite intersections, then the Čech cohomology Ȟ(U ,F) is
naturally isomorphic to its sheaf cohomology H(X,F). In general, there is
a Mayer-Vietoris type spectral sequence relating the two, and also a natural
map from Čech cohomology to sheaf cohomology.

2 Homotopy K-sheaves

A K-(pre)sheaves
Just as presheaves are defined with respect to open sets, one can instead attempt
to work with compact sets. This motivates the introduction of theK-presheaf, and
in analogy with the construction of sheaves, we shall also define K-sheaves.

Definition 2.1. AK-presheaf on a spaceX is a contravariant functor from the cat-
egory of compact sets of X (with inclusion morphisms) to the category of abelian
groups. Morphisms of K-presheaves are natural transformations.
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Definition 2.2. A K-sheaf F on a space X is a K-presheaf such that

• F(∅) = 0

• For any two compact subsets K1, K2 of X , we obtain an exact sequence

0→ F(K1 ∪K2)→ F(K1)⊕F(K2)→ F(K1 ∩K2)

• For any compact subset K ⊂ X , the following natural map is an isomor-
phism:

lim−→
K⊆U
U open

F(U)→ F(K)

Remark. In this definition, and for the rest of this talk, it is important that we are
takingX to be locally compact Hausdorff, so just recall that this condition is lying
inside the word ‘space’.

It turns out that there is a natural adjunction between presheaves andK-presheaves
which is an equivalence on the restriction to sheaves and K-sheaves. Hence, we
can consider these two to essentially be the same.

We note that in the compact world, stalks are easier to talk about. We shall
just write Fp := F({p}).

B Digression on total complexes
We now have our category of (K)-(pre)sheaves as a basic object. The derived
geometry approach would suggest that we might want to consider the derived cat-
egory, and so we should consider complexes of these objects, and study mapping
cones, and so on. For this, we introduce the following notation. Suppose

A•0
f0−→ · · · fn−1−−→ A•n

is a complex of complexes (e.g. of (K)-(pre)sheaves). Then we define

[A•0 → · · · → A•−nn ]

to be the associated total complex of this double complex. That is, if E is this
complex, then we take

Ek =
⊕
i+j=k

Aji
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with differential ∂ : Ek → Ek+1 given by its restriction to each Ak−ii as

∂|Ak−ii
= ∂Ai + (−1)kfi.

The fact that this forms a chain complex is equivalent to the fi’s being chain maps
composing to zero.

For example, suppose we consider a morphism of complexes f : A• → B•.
Then the complex C(f) := [A• → B•−1] is called the mapping cone, with differ-
ential

∂C(f) =

(
∂A 0

(−1)kf ∂B

)
.

In this example, we obtain a natural exact sequence of cohomology groups

H•(C(f))→ H•(A)
f∗−→ H•(B)

+1−→

coming from the long exact sequence in cohomology from the short exact se-
quence of chain complexes

0→ B•−1 → C(f)• → A• → 0.

I leave it as an exercise to show that the connecting morphism induced from this
SES really is f∗.

Generalizing a little further, we have the following example. Consider the
complex of K-presheaves F•(K) := Cn−•(M,M \ K). Then one can consider,
for pairs of compact subsets K1, K2 ⊆ X , the complex

[F•(K1 ∪K2)→ F•−1(K1)⊕F•−1(K2)→ F•−2(K1 ∩K2)].

The point is that acyclicity of this complex is a rephrasing of the Mayer-Vietoris
long exact sequence. In particular, we have that the total complex is just the
iterated mapping cone[

F•(K1 ∪K2)→
[
F•(K1)⊕F•(K2)→ F•−1(K1 ∩K2)

]•−1]
and so acyclicity of this total complex is equivalent to

H•F(K1 ∪K2) ' H•
([
F•(K1)⊕F•(K2)→ F•−1(K1 ∩K2)

])
,

and the right hand side, as a cone, itself fits into an LES from the previous exam-
ple. This yields the Mayer-Vietoris exact sequence as desired.
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One final note for this section, as a last chance to get used to notation, and so
that we can phrase results in a more easily generalized manner. We can rephrase
our definition of Čech cohomology a little more compactly using this total com-
plex notation. Namely,

Ȟ(X,F) = lim−→
X=∪α∈AUα

H•

⊕
p≥0

∏
S⊆A|S|=p+1

F

(⋂
α∈S

Uα

)
[−p]

 ,
where the morphisms in the complex is given by the Čech differential as defined
above (the alternating sum of the face maps).

This motivates the following:

Definition 2.3. We define the Čech cohomology of a complex F• ofK-presheaves
on a compact space X by:

Ȟ(X,F•) := lim−→
X=∪ni=1Ki

H•

⊕
p≥0

⊕
1≤i0<···<ip≤n

F•−p
(

p⋂
j=0

(Kij)

) .
We note that the limit is taken over finite open covers.

This definition matches with usual Čech cohomology when F• is just a K-
sheaf (concentrated in degree zero) under the natural equivalence between sheaves
and K-sheaves. (This is Lemma A.4.11 in Pardon’s paper.)

C Homotopy K-sheaves
Definition 2.4. A homotopy K-sheaf is a complex of K-presheaves F• such that

• F•(∅) is acyclic

• (Mayer-Vietoris) For pairs of compact subsets K1, K2 ⊆ X , the complex[
F•(K1 ∪K2)→ F•−1(K1)⊕F•−1(K2)→ F•−2(K1 ∩K2)

]
is acyclic.

• For any compact subset K ⊂ X , the following natural map is a quasi-
isomorphism:

lim−→
K⊆U
U open

F•(U)→ F•(K)

7



Remark. It is expected that the category of homotopy K-sheaves is equivalent
to the category of so-called homotopy sheaves (defined analogously), or at least
when we consider bounded complexes, but it ends up being easier just to work
with these K-sheaves directly instead of cooking up such an equivalence.

Remark. A K-sheaf, thought of as a complex of K-presheaves concentrated in
degree zero, is not necessarily a homotopy K-sheaf. For this, we need surjectiv-
ity of the restriction maps, called softness, and a complex of soft K-sheaves is
automatically a homotopy K-sheaf.

We will want to check that our virtual chain complexes are actually homotopy
K-sheaves. At first, we will only define ‘partial’ virtual chain complexes, and then
take a homotopy colimit to obtain our full virtual chain complex. For the ‘partial’
complexes, consider the following two lemmas.

Lemma 2.5 (Pardon Lemma A.6.3). The complex of K-presheaves given by

F•(K) = C−•(X,X \K)

is a homotopy K-sheaf.

Lemma 2.6 (Pardon Lemma A.2.11). If F• has a finite filtration with associated
graded a homotopy K-sheaf, then F• is a homotopy K-sheaf.

These two lemmas will immediately tell us that our so-called ‘partial’ virtual
chain complexes will be homotopy K-sheaves. The boundary version will just be
this singular homology presheaf (shifted in degree), and the full version will look
like a mapping cone of such pieces. We might worry about gluing these partial
complexes together in a later talk.

We finish this section by observing that a homotopyK-sheaf computes its own
Ȟ•:

Proposition 2.7 (Pardon Proposition A.4.14). If F• is a homotopy K-sheaf (in
fact, if it satisfies only the first two conditions), then the natural map

H•F•(X)→ Ȟ•(X,F•)

is an isomorphism.
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D Pure homotopy K-sheaves
Actually, being a homotopyK-sheaf isn’t strong enough. We present the following
stronger condition, which our virtual chain complexes will satisfy.

Definition 2.8 (Pardon Definition A.5.1). A homotopy K-sheaf is said to be pure
when

• (Stalk cohomology) H iF•p = 0 for i 6= 0.

• (Weak vanishing) H iF• = 0 locally for i << 0 (meaning for all p, there is
a neighborhood U with H iF•(K) = 0 for all compact K ⊂ U ).

The key property is a refinement of homotopyK-sheaves computing their own
homology, which works for pure homotopy K-sheaves.

Proposition 2.9 (Pardon Proposition A.5.4). For F• a pure homotopy K-sheaf,
there is a canonical isomorphism

H•F•(X) = Ȟ•(X,H0F•).

Further, for a complex of K-presheaves

F•0 → · · · → F•n

with each Fi a pure homotopy K-sheaf, we obtain a canonical isomorphism

H•
[
F•0 (X)→ · · · → F•−nn (X)

]
= Ȟ(X,

[
H0F•0 → · · · → H0F•n[−n]

]
)

Remark. For a pure homotopy K-sheaf, it is automatic that H0F• is a K-sheaf.

Proof sketch. I am including this just to show that there’s a lot being swept under
the rug here. We break this into three isomorphisms:

First, we have the map

H•
[
F•0 (X)→ · · · → F•−nn (X)

]
→ Ȟ•(X,

[
F•0 (X)→ · · · → F•−nn (X)

]
),

which is an isomorphism because [F•0 (X)→ · · · → F•−nn (X)] is a homotopy K-
sheaf, which computes its own Ȟ•.

Second, the map

Ȟ•(X,
[
F•0 (X)→ · · · → F•−nn (X)

]
)→ Ȟ•(X,

[
τ≥0F•0 (X)→ · · · → τ≥nF•−nn (X)

]
)
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is an isomorphism, where τ≥i restricts to the positive degree part, because it turns
out that pure homotopy sheaves actually satisfy strong vanishing H iF• = 0 for
i < 0, and Ȟ• preserves quasi-isomorphisms. These are two lemmas that we
glossed over.

Finally, it turns out that a map of homotopy K-sheaves, each of which sat-
isfies a vanishing condition a la strong vanishing described above, which is a
quasi-isomorphism on stalks will induce an isomorphism on Ȟ . So we obtain an
isomorphism

Ȟ(X,
[
H0F•0 → · · · → H0F•n[−n]

]
)→ Ȟ•(X,

[
τ≥0F•0 (X)→ · · · → τ≥nF•−nn (X)

]
).

This another whole batch of lemmas leading to a proposition that we have simply
glossed over.

E Poincaré duality
Purity of our partial virtual chain complexes will come down to an explicit com-
putation via Poincaré Duality. This is the goal towards which we work at the
end of the section and the end of the talk. We will not present a full version for
simplicity.

First a technical note. In order to define Poincaré duality, we actually need to
use compactly supported Čech cohomology on a sheaf instead. To define this is a
two step process:

• For fixed compact K, Ȟ•K(X,F) is defined exactly the same as Ȟ•(X,F),
but with sections F(U) replaced with kerF(U)→ F(U \K).

• Then take Ȟ•c (X,F) := lim−→K⊆X Ȟ
•
K(X,F).

For an inclusion of an open set f : X ↪→ Y , and a sheafF onX , one can define
a new sheaf, f!F , on Y . Namely, (f!F)(U) consists of elements of F(f−1(U))
which vanish in a neighborhood of Y \X .

Now any map f (not just an inclusion) pulls back open covers, and so for
example, with f an inclusion, we obtain a map

f! : Ȟ
•
c (X,F)→ Ȟ•c (Y, f!F).

Lemma 2.10 (Pardon A.4.7). This map is an isomorphism.

Now let’s specialize.
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Definition 2.11. On a topological manifold M , the orientation sheaf is the sheaf

oM(U) := HdimM(M,M \ U).

For a topological manifold with boundary, let j : M \∂M →M denote inclusion.
Then define

oM := j∗oM\∂M

oM rel ∂ = j!oM\∂M

Finally, we have a simple version of the Poincaré duality we need. (Pardon
proves a relative version, which is no harder to prove, but moderately more an-
noying to state.) For an inclusion i : A → B, we can define a pullback map of
K-sheaves given by (i∗F)(K) = F(i(K)). This allows us to state the result:

Lemma 2.12 (Pardon Lemma A.6.4, simple version). Let M a topological n-
manifold with boundary. Let i : X ↪→M the inclusion of a closed subset. Then

Hn−•(M,M \X) = Ȟc(X, i
∗oM rel ∂).

Proof Sketch. We have Cn−•(M,M \ X) is a homotopy K-sheaf. We can check
that it is pure because it is easy to check that the stalks are all Z in degree
zero at points in the interior of M , and otherwise zero. If we take the 1-point
compactification f : X → X+, we see that we have an isomorphism of stalks
f!i
∗oM → H0F• inducing an isomorphism of sheaves. This therefore yields,

from our computation of homology of pure homotopy K-sheaves, that:

H•F•(X+) = Ȟ•(X+, f!i
∗oM),

and the right-hand side is just Ȟc(X, i
∗oM) from our previous lemma.

The previous version covers one of our partial virtual cochains. The following
more general version covers the other.

Lemma 2.13 (Pardon Lemma A.6.4, full version). Consider also N ⊆ ∂M a
tamely embedded codim 0 submanifold with boundary, and let j be the inclusion
IntM ∪ IntN ↪→M . Then

H• [Cn−1−•(N,N \X)→ Cn−•(M,M \X)] = Ȟ•c (X, i∗j!j
∗oM)
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