1 Due Tuesday, September 3

Multiple choice questions

Multiple choice scoring. Each correctly identified choice is worth 1 positive point. For every incorrect choice, you will receive a deduction of 1 point. Yes, it is possible to get a negative score on these multiple choice problems! So think carefully.

You do not need to give any justification for your multiple choice responses.

Remark 1.0.1. Remember, in mathematics, "true" means always true. "False" means not always true.

In some of the problems below, I will carefully remind you of what it means for particular statements to be true. I will remove these parenthetical clarifications in the days to come.

Preliminaries

Given two real numbers x and $x^{\prime},{ }^{1}$ we define

$$
d\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|
$$

1.1

Which of the following statements are true?
(a) $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right)$. That is, d is symmetric. (For this statement to be true, we man that for any choice of x and any choice of x^{\prime}, the equality holds.)
(b) If $d\left(x, x^{\prime}\right)=0$, then $x=x^{\prime}$.
(c) Let $x, x^{\prime}, x^{\prime \prime}$ be three real numbers. Then $d\left(x, x^{\prime}\right)+d\left(x^{\prime}, x^{\prime \prime}\right) \leq d\left(x, x^{\prime \prime}\right)$. (Remember, that this statement is true means that for any choice of three real numbers x, x^{\prime}, and $x^{\prime \prime}$, this inequality holds.)

[^0](d) $d\left(x, x^{\prime}\right)$ may be negative. (That is, there exists a pair of real numbers x and x^{\prime} for which $d\left(x, x^{\prime}\right)$ is a negative number.)
(e) Let $x, x^{\prime}, x^{\prime \prime}$ be three real numbers. If $d\left(x, x^{\prime}\right)=d\left(x, x^{\prime \prime}\right)$ then $x^{\prime}=x^{\prime \prime}$.

1.2

Which of the following statements are true?
(a) (Scaling.) For all real numbers k, x, x^{\prime}, we have

$$
d\left(k x, k x^{\prime}\right)=k d\left(x, x^{\prime}\right)
$$

(b) (Translation invariance.) For all real numbers $x, x^{\prime}, x^{\prime \prime}$, we have

$$
d\left(x-x^{\prime \prime}, x^{\prime}-x^{\prime \prime}\right)=d\left(x, x^{\prime}\right)
$$

(c) For all real numbers $x, x^{\prime}, x^{\prime \prime}$, we have

$$
d\left(x+x^{\prime \prime}, x^{\prime}\right)=d\left(x, x^{\prime}\right)+x^{\prime \prime}
$$

(d) (Skew-symmetry.) $d\left(x, x^{\prime}\right)=-d\left(x^{\prime}, x\right)$.

1.3

Fix an integer $n \geq 1 .{ }^{2}$ We let $X=\mathbb{R}^{n}$, so that an element $x \in X$ is the data of n real numbers, called the coordinates of x. We will denote the coordinates of x by

$$
\left(x_{1}, \ldots, x_{n}\right)
$$

So for example, $(\pi, e, 13)$ is an element of \mathbb{R}^{3}.
We define

$$
d\left(x, x^{\prime}\right)=\sqrt{\left(x_{1}-x_{1}^{\prime}\right)^{2}+\ldots+\left(x_{n}-x_{n}^{\prime}\right)^{2}}
$$

Which of the following are true?
(a) For any two $x, x^{\prime} \in \mathbb{R}^{n}$, we have $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right)$. That is, d is symmetric.
(b) For any two $x, x^{\prime} \in \mathbb{R}^{n}$, if $d\left(x, x^{\prime}\right)=0$, then $x=x^{\prime}$.
(c) For any three $x, x^{\prime}, x^{\prime \prime} \in \mathbb{R}^{n}$, we have $d\left(x, x^{\prime}\right)+d\left(x^{\prime}, x^{\prime \prime}\right) \leq d\left(x, x^{\prime \prime}\right)$.

[^1]
1.4

For $n \geq 0$, we let $0 \in \mathbb{R}^{n+1}$ denote the origin; this is the element whose coordinates are all equal to zero.

We let S^{n} denote the set of all points x^{\prime} such that $d\left(0, x^{\prime}\right)=1$.
Which of the following are true?
(a) $(n=0.) S^{0}$ consists of exactly two points.
(b) $(n=1.) S^{1}$ is a circle.
(c) $(n=2.) S^{2}$ is a sphere.
(d) $\left(n=3\right.$.) S^{3} is a cube.

Proofs

1.5 (10 points)

Fix an infinite sequence of real numbers x_{1}, x_{2}, \ldots, ,
Definition 1.5.1. We say that the sequence converges, or is convergent, if there exists a real number x such that the following holds:

For every $\epsilon>0$, there exists an integer N such that

$$
i>N \Longrightarrow\left|x_{i}-x\right|<\epsilon
$$

Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and if a sequence x_{1}, x_{2}, \ldots converges, then the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$ also converges.

1.6 Extra Credit (5 points)

Investigate the converse to the previous problem. That is, suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying the following property: For any convergent sequence x_{1}, x_{2}, \ldots, the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$ converges.

Is it true that f must be continuous? Give a complete proof or counterexample.

1.7 Extra Credit (5 points)

In this problem, you will prove that any pair of closed, bounded intervals of non-zero length are homeomorphic.

So fix real numbers $a<b$ and $c<d$. Prove that there exists a continuous function

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

satisfying the following properties:

1. f takes the interval $[a, b]$ to $[c, d]$ bijectively.
2. Moreover, the inverse

$$
g:[c, d] \rightarrow[a, b]
$$

is continuous.

1.8 Extra Credit (5 points)

Does there exists a continuous bijection f from $[a, b]$ to $[c, d]$ such that the inverse function from $[c, d]$ to $[a, b]$ is not continuous?

[^0]: ${ }^{1}$ Recall that in math-talk, even though we say "two" real numbers x and x^{\prime}, our choices may include the case where x is the same real number as x^{\prime}.

[^1]: ${ }^{2}$ Remember, this means that n-in what follows-is any integer greater than or equal to 1 .

