3 Due Tuesday, September 17

3.1

Which of the following is a true statement? Every correct choice gives +1 . If you incorrectly identify a false statement as true, you get -1 point.

1. The sequence $x_{j}=1 / j$ converges to 0 in $\left(\mathbb{R}, d_{s t d}\right)$.
2. The constant sequence $x_{j}=0$ converges to 0 in $\left(\mathbb{R}, d_{s t d}\right)$.
3. Suppose that two sequences x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots both converge to the same point z. Construct a new sequence z_{1}, z_{2}, \ldots by:

$$
z_{i}= \begin{cases}x_{(i+1) / 2} & i \text { odd } \\ y_{i / 2} & i \text { even. }\end{cases}
$$

Then the sequence z_{i} converges to z.
4. Fix sequences x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots in \mathbb{R}. If both sequences converge, then the sequence

$$
x_{1}+y_{1}, x_{2}+y_{2}, \ldots
$$

converges. (Put another way, this is the sequence whose i th term is $x_{i}+y_{i}$.)

3.2

Which of the following is a true statement? Every correct choice gives +1 . If you incorrectly identify a false statement as true, you get -1 point.

1. For any metric space (X, d), the empty set $\emptyset \subset X$ is always an open set.
2. For any metric space (X, d), the set X is always an open set.
3. For any metric space (X, d), and for any positive real number $r>0$ and any element $x \in X$, the open ball $\operatorname{Ball}(x, r)$ of radius r centered at x is always an open set.
4. Suppose that x is contained in some open ball $\operatorname{Ball}\left(x^{\prime}, r^{\prime}\right)$ centered at some x^{\prime} and having some radius r^{\prime}. Then there exists some $r>0$ so that $\operatorname{Ball}(x, r)$ is contained in $\operatorname{Ball}\left(x^{\prime}, r^{\prime}\right)$.
5. If two open balls contains some element $x \in X$, then the two open balls must be equal.
6. Given $x \in X$, there exist only finitely many open balls in X containing x.
7. Every metric space has infinitely many distinct open balls.

3.3

Which of the following is a true statement? Every correct choice gives +1 . If you incorrectly identify a false statement as true, you get -1 point.

1. Let $(X, d)=\left(\mathbb{R}, d_{s t d}\right)$. The subset $\mathbb{Q} \subset \mathbb{R}$ of all rational numbers is open.
2. For any metric space (X, d), a subset $A \subset X$ either is open, or is the complement of an open set.
3. Let $(X, d)=\left(\mathbb{R}, d_{\text {std }}\right)$, and fix a closed interval $[a, b] \subset X$ with $a<b$. Then the complement of $[a, b]$ is open.
4. Let $(X, d)=\left(\mathbb{R}^{2}, d_{s t d}\right)$, and fix a square $[a, b] \times[a, b] \subset X$ with $a<b$. Then the complement of $[a, b] \times[a, b]$ is open.

3.4 (10 points)

Let (X, d) be a metric space. Recall that a subset $U \subset X$ is called open if U can be written as a union of open balls of X.

Prove the following statements:
(a) Let U_{1}, \ldots, U_{k} be a finite collection of open sets. Then the intersection

$$
U_{1} \cap \ldots U_{k}
$$

is an open subset of X.
(b) Consider an arbitrary collection of open sets. We will use the notation

$$
\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}
$$

to denote this collection. That is, we have some arbitrary set \mathcal{A}, and for every $\alpha \in \mathcal{A}$, we can specify some open set U_{α}. The set above refers to collection of all U_{α}.
Prove that the union

$$
\bigcup_{\alpha \in \mathcal{A}} U_{\alpha}
$$

is open.

3.5 Extra Credit (5 points)

Let X be any finite set. Show that for any metric on X, every subset of X is open.

3.6 Extra Credit (5 points)

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and suppose X and Y are both finite sets. Show that any bijection from X to Y is continuous.

3.7 Extra Credit (5 points)

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces, and suppose X and Y are both finite sets. Show that any bijection from X to Y is continuous.

3.8 Extra Credit (5 points, very hard)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \cos \left((13)^{n} \pi x\right) .
$$

Show that $f(x)$ is continuous. Extra extra credit: Does it have a derivative?

