4 Due Tuesday, September 24

4.1 Multiple Choice

A correct response gets you 1 point. If you incorrectly label a false statement as true, you will get -1 points.

Let (X, d_X) be a metric space and let $U \subset X$ be open. Which of the following is true?

(a) For any $x \in U$, there exists some $\delta > 0$ so that $\text{Ball}(x, \delta) \subset U$.

(b) U is a union of some collection of open balls.

(c) U is a union of some finite collection of open balls.

- (d) U cannot be written as a union of finitely many open balls.
- (e) U is an open ball.
- (f) U cannot be the empty set.
- (g) U cannot be X itself.

4.2 Multiple Choice

A correct response gets you 1 point. If you incorrectly label a false statement as true, you will get -1 points.

Let (X, d_X) and (Y, d_Y) be metric spaces. Recall from last homework that we can define a metric space structure on $X \times Y$ by declaring

$$d((x, y), (x', y')) = d_X(x, x') + d_Y(y, y').$$

Which of the following is true?

- (a) If $U \subset X$ and $V \subset Y$ are open subsets, then $U \times V$ is an open subset of $X \times Y$.
- (b) Every open subset of $X \times Y$ can be written $U \times V$, where U is open in X and V is open in Y.
- (c) If $U \subset X$ is an open subset, then $U \times Y$ is an open subset of $X \times Y$.

4.3 (Mandatory for some) Extra Credit (5 points)

If you got a 6 or below on any of the writing assignments, you must complete this problem. It will be treated as extra credit, so that it cannot bring down your average; but you must submit a solution to this problem.

If you did not get 6 or below, you can still submit this problem; it will be treated as extra credit.

Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 3 & x \le 0\\ 10 & x > 0. \end{cases}$$

Consider both the domain and codomain as a metric space using the standard metric on \mathbb{R} . Prove that f is not continuous in three ways:

- (a) by using the ϵ - δ definition of continuity,
- (b) by using the "preimage of an open set is open" criterion of continuity, and
- (c) by using the convergent sequence criterion of continuity.

$4.4 \quad (10 \text{ points})$

Let (X, \mathfrak{T}_X) be a topological space, and fix a surjection $p : X \to Y$. Let us declare \mathfrak{T}_Y to be the collection of those subsets $V \subset Y$ such that $p^{-1}(V)$ is an open subset of X.

We call this the quotient topology of Y.

- (a) Show that (Y, \mathcal{T}_Y) is a topological space.
- (b) Let Z be a topological space. Show that $f: Y \to Z$ is continuous if and only if the composition $f \circ p: X \to Z$ is continuous.

4.5 Extra Credit (5 points)

Let [1] be the set consisting of two elements called 0 and 1. We consider [1] as a topological space by declaring its open sets to be

$$\{0,1\},\{1\},\emptyset$$

Let X be a topological space, \mathcal{T} its collection of open sets, and $C^0(X, [1])$ the collection of continuous functions from X to [1].

Exhibit a bijection between \mathfrak{T} and $C^0(X, [1])$.

4.6 Extra Credit (5 points)

A norm on \mathbb{R}^d is a choice of function $N : \mathbb{R}^d \to \mathbb{R}$ such that

- 1. N(x) = 0 if and only if x = 0,
- 2. $N(tx) = |t| \cdot N(x)$ for any $t \in \mathbb{R}$ and any $x \in \mathbb{R}^d$.
- 3. $N(x+x') \leq N(x) + N(x')$ for any $x, x' \in \mathbb{R}^d$.

Any norm defines a metric by declaring

$$d_N(x, x') = N(x - x').$$

Let N and M be two norms on \mathbb{R}^d . Show that the identity function

$$(\mathbb{R}^d, d_N) \to (\mathbb{R}^d, d_M)$$

is continuous.