5 Due Tuesday, October 1

5.1 Multiple choice.

You get +1 for every response correctly chosen, and -1 for every response you incorrectly choose.

Based on what we have defined in this class, which of the following notions make sense?

- (a) For a function between two metric spaces to be continuous.
- (b) For a function between two topological spaces to be continuous.
- (c) For a function between two metric spaces to be continuous.
- (d) For a function between two topological spaces to be convergent.
- (e) For a function between two topological spaces to be open.
- (f) For an open subset of a topological space to be convergent.
- (g) For a subset of a metric space to be open.
- (h) For a subset of a topological space to be open.
- (i) For a sequence in a metric space to be convergent.
- (j) For a sequence between two metric spaces to be convergent.
- (k) For a sequence between two metric spaces to be continuous.
- (l) For a topological space to be convergent.
- (m) For an element of a metric space to be convergent.
- (n) For an element of a topological space to be continuous.

5.2 Multiple choice.

You get +1 for every response correctly chosen, and -1 for every response you incorrectly choose.

Let X be a set and $E \subset X \times X$ an equivalence relation. Which of the following is true?

- (a) If $A, A' \subset X$ are two equivalence classes, then either $A \cap A' = \emptyset$ or A = A'.
- (b) x and x' are in the same equivalence class if and only if $x \sim x'$.

(c) X/\sim is empty if and only if X is empty.

- (d) The function $X \to X/\sim$ is an injection
- (e) The function $X \to X/\sim$ is a surjection.

5.3 Proof (10 points)

Let (X, \mathfrak{T}_X) be a topological space. We say that (X, \mathfrak{T}_X) is *Hausdorff* if and only if the following holds:

For any $x, x' \in X$ with $x \neq x'$, there exist open sets $U, U' \subset X$ such that

- 1. $x \in U$ and $x' \in U'$, and
- 2. $U \cap U' = \emptyset$.
- (a) Suppose that d_X is a metric on X, and \mathcal{T}_X is the topology induced by d_X . (So $U \in \mathcal{T}_X$ if and only if U is a union of open balls.) Prove that (X, \mathcal{T}_X) is Hausdorff. (That is, any metric space is Hausdorff.)
- (b) Let $(X, d_X) = (\mathbb{R}, d_{std})$ and consider the following equivalence relation on \mathbb{R} : We say that $x \sim x'$ if and only if there is a *non-zero* real number t such that tx = x'. Show that X/\sim is not Hausdorff.

5.4 Extra Credit (5 points)

Give an example of two topological spaces X and Y, together with a continuous surjection $f: X \to Y$, where Y does *not* have a quotient topology induced by any equivalence relation on X.

5.5 Extra Credit (5 points)

True or false: If X and Y are Hausdorff topological spaces, then their product is Hausdorff. You get no credit unless you justify your answer.

5.6 Extra Credit (5 points)

True or false: Every non-Hausdorff topological space is the quotient of a Hausdorff topological space.