6 Homework due Tuesday, October 8

Set-up: Let $\mathbb{R}^{2} \backslash\left\{(0,0\}\right.$ denote the set of points in \mathbb{R}^{2} that are not the origin. Define an equivalence relation by declaring that

$$
\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)
$$

if and only if there exists a non-zero real number t such that

$$
t x_{1}=x_{1}^{\prime} \quad \text { and } \quad t x_{2}=x_{2}^{\prime} .
$$

We let

$$
X:=\left(\mathbb{R}^{2} \backslash\{(0,0\}) / \sim\right.
$$

denote the quotient space. (So X is given the quotient topology.)
On the other hand, define an equivalence relation $\sim_{S^{1}}$ on S^{1} by declaring that

$$
\left(x_{1}, x_{2}\right) \sim_{S^{1}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)
$$

if and only if one of the following holds:

$$
\left(x_{1}, x_{2}\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \quad \text { or } \quad\left(x_{1}, x_{2}\right)=\left(-x_{1}^{\prime},-x_{2}^{\prime}\right) .
$$

We let

$$
Y:=S^{1} / \sim_{S^{1}} .
$$

Problem: Exhibit a homeomorphism from X to Y.
(This verifies that the two topologies we have put on $\mathbb{R} P^{1}$ are equivalent.)

