2 Solutions to HW 1

Multiple choice questions

Bolded responses are the correct responses.

2.1

Which of the following statements are true?

- (a) $d(x, x') = d(x', x)$. That is, *d* is *symmetric*. (For this statement **to be true, we man that for** *any* **choice of** *x* **and any choice of** *x* Õ **, the equality holds.)**
- (b) If $d(x, x') = 0$, then $x = x'$.
- = $d(x', x)$. That is, *d* is *symmetric*. (For this s
rue, we man that for *any* choice of *x* and any
equality holds.)
 $x') = 0$, then $x = x'$.
 $', x''$ be three real numbers. Then $d(x, x') + d(x', x'')$
nber, that this statement is tru (c) Let x, x', x'' be three real numbers. Then $d(x, x') + d(x', x'') \leq d(x, x'')$. (Remember, that this statement is true means that for *any* choice of three real numbers x, x' , and x'' , this inequality holds.)
- (d) $d(x, x')$ may be negative. (That is, there exists a pair of real numbers x and x' for which $d(x, x')$ is a negative number.)
- (e) Let x, x', x'' be three real numbers. If $d(x, x') = d(x, x'')$ then $x' = x''$.

2.2

Which of the following statements are true?

(a) (Scaling.) For all real numbers k, x, x' , we have

$$
d(kx, kx') = kd(x, x').
$$

(b) (Translation invariance.) For all real numbers x, x', x'' , we have

$$
d(x - x'', x' - x'') = d(x, x').
$$

(c) For all real numbers x, x', x'' , we have

$$
d(x + x'', x') = d(x, x') + x''.
$$

(d) (Skew-symmetry.) $d(x, x') = -d(x', x)$.

2.3

Fix an integer $n \geq 1$.³ We let $X = \mathbb{R}^n$, so that an element $x \in X$ is the data of *n* real numbers, called the *coordinates* of *x*. We will denote the coordinates of *x* by

$$
(x_1,\ldots,x_n).
$$

So for example, $(\pi, e, 13)$ is an element of \mathbb{R}^3 .

We define

$$
d(x, x') = \sqrt{(x_1 - x'_1)^2 + \ldots + (x_n - x'_n)^2}.
$$

Which of the following are true?

- $u(x, x) = \sqrt{(x_1 x_1)} + \dots + (x_n x_n)$.

f the following are true?
 y two $x, x' \in \mathbb{R}^n$, we have $d(x, x') = d(x', x)$. The
 etric.

y two $x, x' \in \mathbb{R}^n$, if $d(x, x') = 0$, then $x = x'$,

three $x, x', x'' \in \mathbb{R}^n$, we have $d(x, x') + d(x',$ (a) For any two $x, x' \in \mathbb{R}^n$, we have $d(x, x') = d(x', x)$. That is, d is *symmetric* **.**
- (b) For any two $x, x' \in \mathbb{R}^n$, if $d(x, x') = 0$, then $x = x'$.
- (c) For any three $x, x', x'' \in \mathbb{R}^n$, we have $d(x, x') + d(x', x'') \leq d(x, x'')$.

2.4

For $n \geq 0$, we let $0 \in \mathbb{R}^{n+1}$ denote the origin; this is the element whose coordinates are all equal to zero.

We let $Sⁿ$ denote the set of all points x' such that $d(0, x') = 1$. Which of the following are true?

- (a) $(n = 0)$. S^0 consists of exactly two points.
- (b) $(n = 1)$ S^1 is a circle.
- (c) $(n = 2)$, S^2 is a sphere.
- (d) $(n = 3.)$ *S*³ is a cube.

³Remember, this means that *n*—in what follows—is any integer greater than or equal to 1.

Proofs

2.5 (10 points)

Fix an infinite sequence of real numbers $x_1, x_2, \ldots,$

Definition 2.5.1. We say that the sequence *converges*, or is *convergent*, if there exists a real number *x* such that the following holds:

For every $\epsilon > 0$, there exists an integer N such that

$$
i > N \implies |x_i - x| < \epsilon.
$$

Prove that if $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and if a sequence x_1, x_2, \ldots converges, then the sequence $f(x_1), f(x_2), \ldots$ also converges.

 $i > N \implies |x_i - x| < \epsilon$.

and if $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, and if a

inverges, then the sequence $f(x_1), f(x_2), \ldots$ also converges at prove more; we will prove that if the sequence x_1, \ldots

the sequence $f(x_1),$ We will in fact prove more; we will prove that if the sequence x_1, \ldots converges to x, then the sequence $f(x_1), \ldots$ converges to $f(x)$. To do so, given $\epsilon > 0$, we must find a number N such that $i > N$ implies $|f(x_i) - f(x)| < \epsilon$. By continuity, we can find a δ such that $|x_i - x| < \delta$ implies $|f(x_i) - f(x)| < \epsilon$. By the assumption that x_1, \ldots converges, there is some N_{δ} such that $i > N_{\delta} \implies |x_i - x| < \delta$. We are finished by taking $N = N_{\delta}$.