7 HW 7 Solutions

(Don't forget that there are multiple choice problems online.)

7.1 Slow down, this is a neighborhood! (10 points)

Let (X, \mathfrak{T}_X) be a topological space, and let $A \subset X$ be a subset.

We say that a subset $V \subset X$ is a *neighborhood of* A if and only if there is some open subset U of X such that

$$A \subset U \subset V.$$

(Remember that Hiro uses the convention that \subset need not be a *proper* subset. So for example, $X \subset X$.)

Now let $x \in X$ be an element. We say that a subset $V \subset X$ is a *neighborhood of* x if there exists an open subset $U \subset X$ such that $x \in U$ and $U \subset V$.

Fix a subset $V \subset X$. Prove that the following are equivalent:

- (a) V is open.
- (b) For every $x \in V$, V is a neighborhood of x.
- (c) For every subset $A \subset V$, V is a neighborhood of A.
- (d) V is a neighborhood of itself.

(a) \implies (b). Because V is open, we can set U = V. (b) \implies (c). Given $A \subset V$ and for every $x \in A$, let $U_x \subset V$ be the open subset showing that V is a neighborhood of x. Then set $U = \bigcup_{x \in A} U_x$. This U is open because it is a union of open subsets U_x , and we clearly have $A \subset U$ and $U \subset V$. (c) \implies (d). Take A = V. (d) \implies (a). We know where exists an open subset U satisfying $V \subset U \subset V$.

But $V \subset U$ and $U \subset V$ means U = V.