Homework 11 Solutions

Proof (10 points)

Let (X, d) be a metric space, and fix a sequence of elements

$$
x_{1}, x_{2}, \ldots
$$

in X. Choose also $x \in X$.
Recall that we say this sequence converges to x if, for every $\epsilon>0$, there exists $N>0$ so that

$$
i>N \Longrightarrow d\left(x_{i}, x\right)<\epsilon
$$

(a) Suppose X is a metric space and that $A \subset X$ is a closed subset. Then for any convergent sequence x_{1}, x_{2}, \ldots converging to x, if $x_{i} \in A$ for all i, then $x \in A$.
(b) Suppose X is compact, and let $f: X \rightarrow \mathbb{R}$ be a continuous function. Show that f achieves a minimum and a maximum - that is, there is some $x_{\text {min }} \in X$ such that for all $x \in X, f(x) \geq f\left(x_{\text {min }}\right)$. Likewise, there is some $x_{\max } \in X$ so that for all $x \in X, f(x) \leq f\left(x_{\max }\right)$.
(a) Note that A^{C} is open because A is closed. Thus if $x \in A^{C}$ we know (by definition of topology induced by a metric) that there is some $\epsilon>0$ for which $\operatorname{Ball}(x ; \epsilon) \subset A^{C}$. In particular, there is no point in A which is within distance ϵ of x. Thus no sequence in X could converge to $x \in A^{C}$ while being fully contained in A. This proves the contrapositive, hence the original statement.
(b) We only prove the statement about the maximal element; the proof of the minimal element is similar, or can be proven by examining the function $-f$, which is a composition of f with the continuous function $t \mapsto-t$. Because X is compact and f is continuous, the image $f(X)$ is compact. By the Heine-Borel theorem, this means that $f(X)$ is a closed and bounded subset of \mathbb{R}. Because $f(X)$ is bounded, let us choose t to be the least upper bound of $f(X)$, otherwise known as the supremum of $f(X)$. Then because $f(X)$ is closed, we know that $t \in f(X)$, hence there exists some $x \in X$ for which $f(x)=t$, and hence $f(x) \geq f\left(x^{\prime}\right)$ for any $x^{\prime} \in X$.
(Here is a more involved argument: Let M be the set of all $t \in \mathbb{R}$ such that $x \in X \Longrightarrow t \geq f(x)$. Choose any $x_{0} \in X$, and any $t_{0} \in M$. Now inductively define x_{n+1} and t_{n+1} as follows: If the average $s=\left(t_{n}-x_{n}\right) / 2$ is in M, let t_{n+1} be this average and let $x_{n+1}=x_{n}$; otherwise, choose x_{n+1} to be any element of X such that $f\left(x_{n+1}\right)$ is a number between s and t_{n}, and set t_{n+1} to equal t_{n}. Then the sequence $f\left(x_{0}\right), f\left(x_{1}\right), \ldots$ forms an increasing, bounded sequence, and hence have a limit in \mathbb{R}. By a previous homework problem, because $f(X)$ is closed, this limit is in $f(X)$ itself; thus there is some $x \in X$ for which $f(x)$ is the limit. By construction, $f(x)$ satisfies the property that it is smaller than or equal to any element of M, and larger than or equal to any element in $f(X)$. This finishes the proof.)

