Homework 12 Solutions

Proof (10 points)

Let $n=(0,0,1) \in \mathbb{R}^{3}$ be the north pole of the sphere. Let

$$
p: S^{2} \backslash\{n\} \rightarrow \mathbb{R}^{2}, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto \frac{1}{1-x_{3}}\left(x_{1}, x_{2}\right)
$$

be the stereographic projection. Show that the function

$$
S^{2} \rightarrow\left(\mathbb{R}^{2}\right)^{+}=\mathbb{R}^{2} \cup\{*\}, \quad x \mapsto \begin{cases}* & x=n \\ p(x) & x \neq n\end{cases}
$$

(the codomain is the one-point compactification of \mathbb{R}^{2}) is a homeomorphism.

Let's set some notation. We'll call the function f. We'll denote elements of the domain by x, and elements of the codomain by y.
We first show f is a surjection. Clearly the point $* \in\left(\mathbb{R}^{2}\right)^{+}$is equal to $f(n)$, so we need only check that all points of \mathbb{R}^{2} are in the image of f. That is, given $y=\left(y_{1}, y_{2}\right)$, we seek $\left(x_{1}, x_{2}, x_{3}\right)$ such that

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 \quad \text { and } \quad y_{1}=\frac{x_{1}}{1-x_{3}}, \quad y_{1}=\frac{x_{2}}{1-x_{3}} \tag{12.1}
\end{equation*}
$$

Note we are finished if we can solve for x_{3}, for then our knowledge of each y_{i} tells us that $x_{i}=\left(1-x_{3}\right) y_{i}$. The equation of the sphere tells us

$$
\begin{aligned}
0 & =\left(\left(1-x_{3}\right) y_{1}\right)^{2}+\left(\left(1-x_{3}\right) y_{2}\right)^{2}+x_{3}^{2}-1 \\
& =\left(1+y_{1}^{2}+y_{2}^{2}\right) x_{3}^{2}+-2\left(y_{1}^{2}+y_{2}^{2}\right) x_{3}+\left(y_{1}^{2}+y_{2}^{2}-1\right)
\end{aligned}
$$

Thus we can solve for x_{3} using the quadratic formula:

$$
\begin{align*}
x_{3} & =\frac{2\left(y_{1}^{2}+y_{2}^{2}\right) \pm \sqrt{4\left(y_{1}^{2}+y_{2}^{2}\right)^{2}-4\left(1+y_{1}^{2}+y_{2}^{2}\right)\left(-1+y_{1}^{2}+y_{2}^{2}\right)}}{2\left(1+y_{1}^{2}+y_{2}^{2}\right)} \\
& =\frac{y_{1}^{2}+y_{2}^{2} \pm \sqrt{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}-\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+1}}{1+y_{1}^{2}+y_{2}^{2}} \\
& =\frac{ \pm 1+y_{1}^{2}+y_{2}^{2}}{1+y_{1}^{2}+y_{2}^{2}} \tag{12.2}
\end{align*}
$$

The solution $x_{3}=1$ clearly falls outside our scope, as such a point is not in $S^{2} \backslash\{n\}$. Thus we find

$$
\begin{equation*}
x_{3}=\frac{y_{1}^{2}+y_{2}^{2}-1}{y_{1}^{2}+y_{2}^{2}+1}, \quad x_{1}=y_{1}\left(1-x_{3}\right), \quad x_{2}=y_{2}\left(1-x_{3}\right) \tag{12.3}
\end{equation*}
$$

Incidentally, this also shows that f is a bijection-this is because we found that any x satisfying (12.1) must have coordinates given by (12.3).

Now we must show that f is continuous. First, let us show that the map

$$
\phi: S^{2} \backslash\{n\} \rightarrow \mathbb{R}^{2}, \quad x \mapsto f(x)
$$

is continuous. To see this, we first note that each of the following functions is continuous:
$h: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \backslash\{0\}, \quad h(t)=1-t, \quad g: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, \quad g(s)=1 / s$.
Thus, the composition
$\mathbb{R} \times \mathbb{R} \times(\mathbb{R} \backslash\{1\}) \rightarrow \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(g h\left(x_{3}\right), x_{1}\right) \mapsto g h\left(x_{3}\right) \cdot x_{1}=\frac{x_{1}}{1-x_{2}}$
is continuous. Likewise for the map $\left(x_{1}, x_{2}, x_{3}\right) \mapsto \frac{x_{2}}{1-x_{3}}$. Hence the composition

$$
S^{2} \backslash\{n\} \rightarrow \mathbb{R} \times \mathbb{R} \times(\mathbb{R} \backslash\{1\}) \rightarrow \mathbb{R} \times \mathbb{R}, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto \frac{1}{1-x_{3}}\left(x_{1}, x_{2}\right)
$$

is continuous. But this composition is ϕ !
And we learn more: We know ϕ is a bijection because ϕ^{-1} is given by (12.3). By similar reasoning as above, we see that ϕ^{-1} is continuous.
Now suppose $U \subset\left(\mathbb{R}^{2}\right)^{+}$does not intersect *. Then $f^{-1}(U)=\phi^{-1}(U)$, which-by the continuity of ϕ-is an open subset of $S^{2} \backslash\{n\}$. But S^{2} is a metric space, hence Hausdorff, so $\{n\}$ is a closed subset of S^{2}, meaning $S^{2} \backslash\{n\}$ is open in S^{2}. In particular, $f^{-1}(U)=\phi^{-1}(U)=\phi^{-1}(U) \cap S^{2} \backslash\{n\}$ is open.
Now suppose that U does intersect $*$. By definition of the one-point compactification, this means that $U \cap \mathbb{R}^{2}=\mathbb{R}^{2} \backslash K$, where K is some compact subset of \mathbb{R}^{2}. Thus $f^{-1}(U)=f^{-1}(K)^{C}=\phi^{-1}(K)^{C}$. Since ϕ^{-1} is continuous, we know that $\phi^{-1}(K)$ is also compact; meaning by Heine-Borel that it is a closed (and bounded) subset of \mathbb{R}^{3}, so that in particular $\phi^{-1}(K) \cap S^{2}$ is also closed. This means that $f^{-1}(U)^{C}$ is closed in S^{2}, so that $f^{-1}(U)$ is open in S^{2}.
Thus, for all open $U \subset\left(\mathbb{R}^{2}\right)^{+}$, we have shown that $f^{-1}(U)$ is open in S^{2}. This shows that f is continuous.

Now we conclude by showing that $\left(\mathbb{R}^{2}\right)^{+}$is Hausdorff. Fix $y, y^{\prime} \in\left(\mathbb{R}^{2}\right)^{+}$. If both y, y^{\prime} are in \mathbb{R}^{2}, this is obvious, as \mathbb{R}^{2} is Hausdorff, and any open subset of \mathbb{R}^{2} is open in its one-point compactification by definition. Now suppose that $y^{\prime}=*$. Let $U=\operatorname{Ball}(0,2|y|)$ be an open ball of radius $2|y|$ (or any radius large enough so that y is in the open ball). Let K be the closed ball of same radius; K is closed and bounded, so compact by HeineBorel. We let $U^{\prime}=\left(\mathbb{R}^{2}\right)^{+} \backslash K$, so that U^{\prime} is open by definition of one-point compactification. Clearly $* \in U^{\prime}$, and by design, $U \cap U^{\prime}=\emptyset$. This shows that $\left(\mathbb{R}^{2}\right)^{+}$is Hausdorff.
Thus, because the domain of f is compact, the codomain is Hausdorff, and f is a continuous bijection, we have shown that f is a homeomorphism.

