Homework 12 Solutions

Proof (10 points)
Let n = (0,0,1) € R3 be the north pole of the sphere. Let
1

p:S*\ {n} = R? (1,9, T3) > ] (1, x2)
be the stereographic projection. Show that the function

* r=n

5% — (R9)™ =R U {x}, xi_){p(x) rtn

(the codomain is the one-point compactification of R?) is a homeomorphism.



Let’s set some notation. We'll call the function f. We'll denote elements of
the domain by z, and elements of the codomain by y.

We first show f is a surjection. Clearly the point * € (R?)T is equal to f(n),
so we need only check that all points of R? are in the image of f. That is,
given y = (y1,y2), we seek (x1, xq, x3) such that

I T2

yl:l—xg

v oo =1 and =g
— I3

(12.1)

Note we are finished if we can solve for x3, for then our knowledge of each y;
tells us that x; = (1 — x3)y;. The equation of the sphere tells us

0=((1—a3)y1)>+ (1 — z3)ya)” + 235 — 1
(L4 o7 +y2)as + —2(y; +y3)zs + (y7 + vs — 1).

Thus we can solve for z3 using the quadratic formula:

2053 +12) £ AW +13)2 — AL+ 43 + 1) (— 1+ 47 +43)
2(1 + 4t +y3)
vy R+ )’ - (B aB) + 1
1+ yf +v3
+1+yi +y3
L+yi+y3

T3 =

(12.2)

The solution z3 = 1 clearly falls outside our scope, as such a point is not in
S%\ {n}. Thus we find

Yty -1

3= 55—, r1 =y1(1 — x3), Ty = Yol — x3) (12.3)
yi+ys +1

Incidentally, this also shows that f is a bijection—this is because we found
that any x satisfying (12.1) must have coordinates given by (12.3).




Now we must show that f is continuous. First, let us show that the map
¢: S\ {n} = R* @ f(z)

is continuous. To see this, we first note that each of the following functions
is continuous:

h:R\ {1} — R\ {0}, h(t) =1—t, g:R\{0} = R, g(s) =1/s.
Thus, the composition

RxRx(R\{1}) - RxR — R, (21, T2, x3) — (gh(z3),z1) — gh(zs)-x =

x2
1—x3°

is continuous. Likewise for the map (z1, 2, x3) — Hence the composi-

tion
1

SP\{n} =R xR x (R\{1}) = R xR, (21, 29, 23) — N (21, 2)
is continuous. But this composition is ¢!

And we learn more: We know ¢ is a bijection because ¢! is given by (12.3).
By similar reasoning as above, we see that ¢! is continuous.

Now suppose U C (R?)T does not intersect x. Then f~1(U) = ¢ }(U),
which—by the continuity of ¢—is an open subset of S? \ {n}. But S? is
a metric space, hence Hausdorff, so {n} is a closed subset of S? meaning
S2\ {n} is open in S%. In particular, f~1(U) = ¢~ (U) = ¢~ 1(U) N S*\ {n}
is open.

Now suppose that U does intersect x. By definition of the one-point com-
pactification, this means that U N R?* = R? \ K, where K is some compact
subset of R2. Thus f~}(U) = f~1(K)“ = ¢ }(K)C. Since ¢! is continuous,
we know that ¢~'(K) is also compact; meaning by Heine-Borel that it is a
closed (and bounded) subset of R?, so that in particular ¢—!(K) N S? is also
closed. This means that f~1(U)% is closed in S2, so that f~1(U) is open in
S2.

Thus, for all open U C (R?)", we have shown that f~'(U) is open in S2.
This shows that f is continuous.
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Now we conclude by showing that (R?)" is Hausdorff. Fix v,y € (R?)'.
If both y,y" are in R?, this is obvious, as R? is Hausdorff, and any open
subset of R? is open in its one-point compactification by definition. Now
suppose that y' = *. Let U = Ball(0,2|y|) be an open ball of radius 2|y|
(or any radius large enough so that y is in the open ball). Let K be the
closed ball of same radius; K is closed and bounded, so compact by Heine-
Borel. We let U’ = (R?)" \ K, so that U’ is open by definition of one-point
compactification. Clearly * € U’, and by design, U N U’ = (). This shows
that (R?)" is Hausdorft.

Thus, because the domain of f is compact, the codomain is Hausdorff, and
f is a continuous bijection, we have shown that f is a homeomorphism.




