Homework 12 Solutions

Proof (10 points)

Let $n = (0, 0, 1) \in \mathbb{R}^3$ be the north pole of the sphere. Let

$$p: S^2 \setminus \{n\} \to \mathbb{R}^2, \qquad (x_1, x_2, x_3) \mapsto \frac{1}{1 - x_3}(x_1, x_2)$$

be the stereographic projection. Show that the function

$$S^2 \to (\mathbb{R}^2)^+ = \mathbb{R}^2 \cup \{*\}, \qquad x \mapsto \begin{cases} * & x = n \\ p(x) & x \neq n \end{cases}$$

(the codomain is the one-point compactification of \mathbb{R}^2) is a homeomorphism.

Let's set some notation. We'll call the function f. We'll denote elements of the domain by x, and elements of the codomain by y.

We first show f is a surjection. Clearly the point $* \in (\mathbb{R}^2)^+$ is equal to f(n), so we need only check that all points of \mathbb{R}^2 are in the image of f. That is, given $y = (y_1, y_2)$, we seek (x_1, x_2, x_3) such that

$$x_1^2 + x_2^2 + x_3^2 = 1$$
 and $y_1 = \frac{x_1}{1 - x_3}$, $y_1 = \frac{x_2}{1 - x_3}$ (12.1)

Note we are finished if we can solve for x_3 , for then our knowledge of each y_i tells us that $x_i = (1 - x_3)y_i$. The equation of the sphere tells us

$$0 = ((1 - x_3)y_1)^2 + ((1 - x_3)y_2)^2 + x_3^2 - 1$$

= $(1 + y_1^2 + y_2^2)x_3^2 + -2(y_1^2 + y_2^2)x_3 + (y_1^2 + y_2^2 - 1).$

Thus we can solve for x_3 using the quadratic formula:

$$x_{3} = \frac{2(y_{1}^{2} + y_{2}^{2}) \pm \sqrt{4(y_{1}^{2} + y_{2}^{2})^{2} - 4(1 + y_{1}^{2} + y_{2}^{2})(-1 + y_{1}^{2} + y_{2}^{2})}}{2(1 + y_{1}^{2} + y_{2}^{2})}$$
$$= \frac{y_{1}^{2} + y_{2}^{2} \pm \sqrt{(y_{1}^{2} + y_{2}^{2})^{2} - (y_{1}^{2} + y_{2}^{2})^{2} + 1}}{1 + y_{1}^{2} + y_{2}^{2}}$$
$$= \frac{\pm 1 + y_{1}^{2} + y_{2}^{2}}{1 + y_{1}^{2} + y_{2}^{2}}$$
(12.2)

The solution $x_3 = 1$ clearly falls outside our scope, as such a point is not in $S^2 \setminus \{n\}$. Thus we find

$$x_3 = \frac{y_1^2 + y_2^2 - 1}{y_1^2 + y_2^2 + 1}, \qquad x_1 = y_1(1 - x_3), \qquad x_2 = y_2(1 - x_3)$$
(12.3)

Incidentally, this also shows that f is a bijection—this is because we found that any x satisfying (12.1) must have coordinates given by (12.3).

Now we must show that f is continuous. First, let us show that the map

$$\phi: S^2 \setminus \{n\} \to \mathbb{R}^2, \qquad x \mapsto f(x)$$

is continuous. To see this, we first note that each of the following functions is continuous:

$$h: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{0\}, \qquad h(t) = 1 - t, \qquad g: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \qquad g(s) = 1/s.$$

Thus, the composition

$$\mathbb{R} \times \mathbb{R} \times (\mathbb{R} \setminus \{1\}) \to \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad (x_1, x_2, x_3) \mapsto (gh(x_3), x_1) \mapsto gh(x_3) \cdot x_1 = \left| \frac{x_1}{1 - x_2} \right|$$

is continuous. Likewise for the map $(x_1, x_2, x_3) \mapsto \frac{x_2}{1-x_3}$. Hence the composition

$$S^2 \setminus \{n\} \to \mathbb{R} \times \mathbb{R} \times (\mathbb{R} \setminus \{1\}) \to \mathbb{R} \times \mathbb{R}, \qquad (x_1, x_2, x_3) \mapsto \frac{1}{1 - x_3}(x_1, x_2)$$

is continuous. But this composition is ϕ !

And we learn more: We know ϕ is a bijection because ϕ^{-1} is given by (12.3). By similar reasoning as above, we see that ϕ^{-1} is continuous.

Now suppose $U \subset (\mathbb{R}^2)^+$ does not intersect *. Then $f^{-1}(U) = \phi^{-1}(U)$, which—by the continuity of ϕ —is an open subset of $S^2 \setminus \{n\}$. But S^2 is a metric space, hence Hausdorff, so $\{n\}$ is a closed subset of S^2 , meaning $S^2 \setminus \{n\}$ is open in S^2 . In particular, $f^{-1}(U) = \phi^{-1}(U) = \phi^{-1}(U) \cap S^2 \setminus \{n\}$ is open.

Now suppose that U does intersect *. By definition of the one-point compactification, this means that $U \cap \mathbb{R}^2 = \mathbb{R}^2 \setminus K$, where K is some compact subset of \mathbb{R}^2 . Thus $f^{-1}(U) = f^{-1}(K)^C = \phi^{-1}(K)^C$. Since ϕ^{-1} is continuous, we know that $\phi^{-1}(K)$ is also compact; meaning by Heine-Borel that it is a closed (and bounded) subset of \mathbb{R}^3 , so that in particular $\phi^{-1}(K) \cap S^2$ is also closed. This means that $f^{-1}(U)^C$ is closed in S^2 , so that $f^{-1}(U)$ is open in S^2 .

Thus, for all open $U \subset (\mathbb{R}^2)^+$, we have shown that $f^{-1}(U)$ is open in S^2 . This shows that f is continuous. Now we conclude by showing that $(\mathbb{R}^2)^+$ is Hausdorff. Fix $y, y' \in (\mathbb{R}^2)^+$. If both y, y' are in \mathbb{R}^2 , this is obvious, as \mathbb{R}^2 is Hausdorff, and any open subset of \mathbb{R}^2 is open in its one-point compactification by definition. Now suppose that y' = *. Let U = Ball(0, 2|y|) be an open ball of radius 2|y| (or any radius large enough so that y is in the open ball). Let K be the closed ball of same radius; K is closed and bounded, so compact by Heine-Borel. We let $U' = (\mathbb{R}^2)^+ \setminus K$, so that U' is open by definition of one-point compactification. Clearly $* \in U'$, and by design, $U \cap U' = \emptyset$. This shows that $(\mathbb{R}^2)^+$ is Hausdorff.

Thus, because the domain of f is compact, the codomain is Hausdorff, and f is a continuous bijection, we have shown that f is a homeomorphism.