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Introduction

Welcome to class. Here are some details:

1. Me: Hiro

2. You: Taking Math 4330, General topology

3. My e-mail, o�ce hours, o�ce, handing out the syllabus, et cetera.

Now let’s get to the good stu�.

Topology is the study of shapes.

Question 0.0.0.1. At this point, what questions do you have as a student?

(Here, I field questions. But I move forward with two:)

1. What do you mean by shape?

2. How do you study them?

The purpose of this class is to give you the vocabulary to begin under-
standing the answers to these questions.

Remark 0.0.0.2. But the vocabulary of mathematics is not like vocabulary
of foreign language; these will not be new words for old ideas; these will be
new words for new ideas.

Remark 0.0.0.3. Just as it will all take us many years to learn what love
is, just as we will have to update our understanding as time passes, and just
as this conceptualization will only change fruitfully as you invest time in this
idea of love, your idea of the word “space” will also require both the passage
and investment of time to develop. Be patient with yourself.
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0.1 A moment of confusion; our goals
Let me open the floodgates for a moment to lay on you some definitions. You
may see terms you are not familiar with, and what happens in the next five
minutes, you are not responsible for knowing just yet.
Definition 0.1.0.1. A topological space is the data of a pair

(X,T)

where X is a set, and T is a collection of subsets of X, satisfying the following
conditions:

1. The empty set ÿ and X itself are in T,

2. For any finite collection U1, . . . , Un in T, the intersection U1 fl . . . fl Un

is in T, and

3. For any collection {U–} µ T, the union t
– U– is in T.

Definition 0.1.0.2. Let (X,T) be a topological space. An element U œ T
is called an open set of X.
Definition 0.1.0.3. Let (X,T) and (X Õ

,TÕ) be two topological spaces. A
function f : X æ X

Õ is called continuous if for any open set U

Õ œ TÕ, the
preimage f

≠1(U Õ) is an open set of X.
That took a few minutes. Believe it or not, if you understand the above

three definitions, you have completed at least half the class.
But you do not understand, at least at this moment. A major goal of this

class will be to understand the above definitions, and as I said, this will take
time. We have the semester for a reason.

Another major goal of this class will be for you to begin thinking the way
mathematicians do. This means to understand how to come to an under-
standing.

0.2 Continuity
So let’s get to it.

Here’s an often unspoken tip about being a mathematician: Oftentimes,
we give definitions of objects, only to be able to understand the functions

between them.
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0.2. CONTINUITY 5

Example 0.2.0.1. For now, you can pretend that I only gave the definition
of a topological space so that I can tell you what a continuous function is.

At this point I want you to feel funny: You already know what a contin-
uous function is! (Or you’re supposed to, at least.) Let’s review.

Let us fix a function
f : R æ R.

I will take some time to dissect this notation for you.

1. Here, R is the collection of all real numbers. It is a set. It contains
things like 0, 1, 2, 3, fi, ≠fi, e, 3/4,

Ô
2, and so forth.

2. The colon :, along with the arrow æ, indicates that I am defining a
function. This function has domain R, and target R as well. In plain
English, this means I am defining an assignment which eats a real
number, and spits out a (possibly di�erent) real number. An example
would be something that takes a real number and outputs its square;
this is often referred to as the function f(x) = x

2.

3. The letter f indicates the name I want to give to the function. For
example, if I were to write “g : R æ R,” I am merely declaring that
from hereon, I will be talking about a function called g.

4. I used the phrase “let us fix a function f .” This is jargon, the same
way lawyers use legal terms, mathematicians use their own linguistic
conventions. “Let us fix a function” does not mean that we all choose
our favorite function. “Let us fix a function,” in fact, means almost
the opposite—it means that we are about to discuss something that is
true for an arbitrary function. You are allowed to have a function in
mind, but you must also be aware that the devil may be in the room,
and the devil may choose a completely di�erent (and horrible-looking)
function.

Discussion 0.2.0.2. What does it mean for a function f : R æ R to be
continuous?

(Some discussions will talk about intuitive meanings, which is fine. Some
discussions may be imprecise. Some will get at a definition.)

In this discussion, I expect some ideas to come up. Things like:
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1. The graph of f has no “jumps.”

2. The graph of f is “connected.”

3. The graph of f “divides” the plane into two halves.

4. If a sequence xn converges to x, then the sequence f(xn) converges to
f(x).

5. f satisfies the “epsilon-delta” definition.

My expectation is that almost everybody will have some intuition—some
correct, some incorrect–about what a continuous function is. I suspect only
a few people will have remembered what the definition that you learn in
calculus is:

Definition 0.2.0.3. A function f : R æ R is called continuous if and only
if:

For every x and for every ‘ > 0,
there exists a ” > 0 so that

for every x

Õ, we have

|x ≠ x

Õ| < ” =∆ |f(x) ≠ f(xÕ)| < ‘.

At this point, you have seen a “definition” of continuity (Definition 0.2.0.3)
and you have also discussed your intuition of continuous functions. You
should notice that the definition and the intuition may look very di�erent.

So, we have already seen one of the major ideas of modern mathematics,
and of this class: Continuity. We will talk more about this as time goes on,
of course. For next time, all you need to do is explore this idea on your own
terms, and turn in the result.

0.3 Getting to know R
As my preview might have hinted, we need to understand and define what it
means for a function to be continuous even when the domain and codomain
may not be R. To do that, we will now examine what enabled us to define a
notion of continuity for functions from R to R; understanding the ingredients
in our familiar case will allow us to extend our ideas to the unfamiliar cases.
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0.3. GETTING TO KNOW R 7

Remark 0.3.0.1. You have known R—the set of real numbers—for a long
time. But like a family member you have known a long time, sometimes it
is only with intense reflection that you realize the things you have taken for
granted.

You are, believe it or not, very familiar with R—like family. But what
are we relying on to define continuity?

Discussion 0.3.0.2. What properties or structures of R are we using in the
epsilon-delta definition of continuity (Definition 0.2.0.3)?

Some things you may come up with:

1. We know how to “subtract” elements when we write things like x ≠ x

Õ

or f(x) ≠ f(xÕ).

2. We know how to take absolute value when we write something like
|x ≠ x

Õ| (or |f(x) ≠ f(xÕ)|.

3. We know how to compare |x≠x

Õ| with ‘ so we can write something like
‘.

4. In fact, we also have intuition about the first two things Hiro listed:
“subtracting” and “take absolute value” combine to give us a notion of
“distance” between two points—|x ≠ x

Õ| is the distance from x to x

Õ.

I would now like to focus on this idea of distance. This will lead us to one
of the most intuitive ways to talk about spaces and continuous maps between
them.
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Metric spaces

As I’ve mentioned before, we will be very much interested in notions of
distance. This is because—at least based on our everyday experiences—
whenever we think of a shape or a space, we can certainly measure the
distance between two points on that shape or space. Moreover, we saw
in the previous section that the very definition of continuity (for functions
f : R æ R) utilized the notion of distance.

Remark 0.3.0.3. Later in our course, we will study shapes where it is
unnatural to speak of distances; this may come as a surprise, but more on
that later.

Today, we’ll isolate what properties of “distance” are reasonable to expect
on the kinds of shapes we’re familiar with.

0.4 Preliminaries: Products
First, let me remind you of some background; it’s okay if this is the first time
you’ve seen these background ideas.

Definition 0.4.0.1. Let X and Y be two sets. Then the notation

X ◊ Y

represents their product; this is also sometimes called the Cartesian product

of X and Y .
X ◊ Y is a set whose elements are ordered pairs

(x, y)

with x œ X and y œ Y .
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Example 0.4.0.2. Let X be a set of three people named Alejandra, Bill,
and Candace. Let Y be a set of two people named Seungwan and Theo.
Then X ◊ Y has exactly six elements, and they are listed as follows:

• (Alejandra, Seungwan)

• (Bill, Seungwan)

• (Candace, Seungwan)

• (Alejandra, Theo)

• (Bill, Theo)

• (Candace, Theo)

Note that (Theo, Candace) is not an element of X ◊ Y . This is what the
word “ordered” means in “ordered pair.”

Example 0.4.0.3. X and Y may be the same set. For example, let R be
the set of all real numbers, and set X = Y = R. Then X ◊ Y has another
names, called R2.1

We will often denote an element of R2 by (x1, x2).

Example 0.4.0.4 (Iterated products). You can iterate the product construc-
tion. For example, if you have three sets X and Y and Z, it makes sense to
form the sets

(X ◊ Y ) ◊ Z and X ◊ (Y ◊ Z).
These two sets are not the same, but there is a natural bijection between
them. This distinction need not worry you for the time being, but thinking
through this statement carefully will do you a lot of good in the future.

There is yet another set you can construct, which we will write

X ◊ Y ◊ Z.

The elements of X ◊ Y ◊ Z consist of ordered triplets (x, y, z) where x œ
X, y œ Y and z œ Z.

Of course if you have a collection of sets, you can take the product of all
of them.

1
This explains the notation R2

; it is quite informal and lazy, but the rationale behind

the notation is the suggestive equality R2
= R ◊ R.
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0.5. DEFINITION OF METRIC SPACES 11

Example 0.4.0.5 (Euclidean space). An important example is Rn, which is
the n-fold Cartesian product of R. You may be more familiar thinking of Rn

as n-dimensional Euclidean space.

Example 0.4.0.6. Fix a set X. We will soon think about functions

X ◊ X æ R.

This means that, for every ordered pair of elements (x1, x2) with x1, x2 œ X,
we will assign a real number.

When X = R, you have seen many examples of such functions:

1. Addition, which sends a pair (x1, x2) to x1 + x2.

2. Subtraction, which sends (x1, x2) to x1 ≠ x2.

3. Multiplication, which sends a pair (x1, x2) to the product x1 · x2.

4. Division is not an example of a function R ◊ R æ R. While you may
happily write a formula taking the pair (x1, x2) to the quotient x1/x2,
this is not defined when x2 = 0.

5. The distance function, which takes a pair (x1, x2) to the distance be-
tween them: |x2 ≠ x1|.

0.5 Definition of metric spaces
Notation 0.5.0.1. Let X be a set. We will often write an element of X ◊X

as (x, x

Õ). (In the previous section, we used the notation (x1, x2) instead.)
The symbol x

Õ is read “x prime.” The reason for this is that we will soon
let X = Rn, so that X itself is made up of ordered tuples; the dual roles
of subscripts will then become quite confusing, so we will use the “prime”
symbol.

Example 0.5.0.2 (Distance on R2). We’ve already talked about the distance
function on the set X = R:

d : R ◊ R æ R, (x, x

Õ) ‘æ |xÕ ≠ x|.

Let’s now think about X = R2. Given two points in R2, what is the distance
between them?
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The Pythagorean theorem tells us: Given two points x = (x1, x2) and
x

Õ = (xÕ
1, x

Õ
2) in R2, the length of the path between them is given by

d(x, x

Õ) =
Ò

(xÕ
1 ≠ x1)2 + (xÕ

2 ≠ x2)2
. (0.5.1)

Note that this function has a lot of intuitive properties:

1. If x = x

Õ, then the distance between x and x

Õ is zero.

2. Conversely, if the distance between two points is zero, they are equal
points.

3. The triangle inequality: This is not always intuitive for most students,
but it is a fact of life. If you have three points x, x

Õ
, x

ÕÕ, then the distance
from x to x

ÕÕ is at most the sum of the distances between x and x

Õ, and
between x

Õ and x

ÕÕ. (You should draw a picture.)

4. Symmetry: The distance from x to x

Õ is the same as the distance from
x

Õ to x.

There are others, but we will leave that for exercises or personal exploration.

Example 0.5.0.3. Now let’s consider a di�erent shape X. For example,
let’s take X to be any arbitrary subset of R2.

Is there still a notion of distance between two points of X? Yes; you could
just measure the distance as you normally would inside R2. Thus we have a
function

d : X ◊ X æ R
by the exact same formula in (0.5.1).

Does this function satisfy all the properties we talked about in Exam-
ple 0.5.0.2? Yes.

We isolate these properties to give the following definition:

Definition 0.5.0.4. A metric space is the data of a pair (X, d) where X is
a set, and

d : X ◊ X æ R
is a function satisfying the following properties:

(0) d(x, x

Õ) = 0 ≈∆ x = x

Õ.
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(1) (Symmetry) d(x, x

Õ) = d(xÕ
, x).

(2) (Triangle inequality) d(x, x

Õ) + d(xÕ
, x

ÕÕ) Ø d(x, x

ÕÕ).

Remark 0.5.0.5. Intuitively, a metric space is a set with some notion of
distance between two points. Note that a single set X may admit many
di�erent examples of a function d. When should we consider to metric spaces
to be equivalent? We will get to that in Section 0.8.

Exercise 0.5.0.6. Show that if (X, d) is a metric space, then for any pair
x, x

Õ œ X, we have that d(x, x

Õ) Ø 0.

At this point, what questions do you have?

0.6 Continuous maps
Definition 0.6.0.1. Let (X, dX) and (Y, dY ) be metric spaces. Fix a function
f : X æ Y . We say that f is continuous if:

For all x œ X and ‘ > 0, there exists ” > 0 such that

dX(x, x

Õ) < ” =∆ dY (f(x), f(xÕ)).

Remark 0.6.0.2. Informally, the above definition says that a continuous
function between metric spaces is one that respects the idea of closeness.

You should think of ‘ as a number a mortal enemy gives you, daring you
to be ‘-close (i.e., within ‘) of f(x).

You should think of ” as the number that allows you to vanquish that
dare: If x

Õ is any element ”-close to x, then you know that f(xÕ) is ‘-close to
f(x).

0.7 Examples of metric spaces
These are all useful examples. You should do your best to understand them.

Example 0.7.0.1 (Euclidean space). Let X = Rn. Define

d(x, x

Õ) =
ı̂ıÙ

nÿ

i=1
(xÕ

i ≠ xi)2
.

This is called the “standard” metric on Rn.


