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Lecture 3

3.1 Remarks on writing assignment
I’d like to touch on a few themes that came up in your writing assignments

3.1.1 Continuity of objects and of functions

Many people thought of continuity in terms of properties of an object—for
example, they explored in what sense R seemed like a continuous object.

As I mentioned in class, we define certain ideas (like topological spaces)
to be able to speak of certain functions between them (like continuous func-
tions). So it is indeed a good investment to think about what it means for an
object like R to have certain properties that allow us to speak of continuous
functions out of, or to, R.

3.1.2 f is continuous if f is defined and...
Many students learn in calculus that f is continuous at a if three conditions
are satisfied:

1. f(a) is defined

2. lim
xæa

f(x) exists, and

3. this limit equals f(a).

However, that first condition is superfluous when you have already de-
clared that f : R æ R is a function from R to R. That the domain is R (and
in particular, all of R!) means that f is defined at any a œ R.
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18 LECTURE 3.

The reason that you were taught the above definition is because most
calculus educators are also taught things that way, and the reason they are
taught things that way is because they are not expected to teach with the
precision and sophistication that should be expected of mathematicians (and
of math majors, at least). For example, your calculus class probably did not
consist only of future math majors, so that level of precision was dropped.
If one has a function f : X æ Y , in particular, f is defined on every element
of X.

Finally, in practice, one sometimes writes a formula, and one needs to
verify that f is indeed a function on all of R. For example, if I declare

f(x) = sin x

x

it is not obvious at first whether f is defined at x = 0. Thus you may not
know whether to declare f to be a function on all of R, or only on the set
R \ {0}. So this is at least the beginnings of why so many people are careful
about verifying that f is defined somewhere—we often write formulas, but
formulas do not always make sense everywhere.

3.1.3 Smooth versus continuous
Some people were confused about the existence of “kinks” or “non-smooth”
phenomena, and said that part of their intuition of continuity contained
a “smoothness” requirement. I want to dissuade you from thinking about
smoothness.

First, “smooth” has a technical meaning in math, as it turns out. A
function is smooth if you can take a derivative as many times as you want.
And while every function is smooth, not every continuous function is smooth.
So keep that in mind.

Next, consider the example of f(x) = |x|. The graph of this function is
not a “smooth” object, as it clearly has a kink, or a corner, at the origin.
But the function is still continuous.

3.1.4 “Approached from either side.”
Many people spoke of limits. They said that a limit lim

xæa

f(x) exists if
“when approached from either side” the limiting value is equal.
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This is a fine intuition for limits in R, but what if you are in R2? If you
chose a point a œ R2, there are many ways to “approach it”–not just in terms
of directions, but also in terms of the shape of the path that you take to get
to a. (For example, one could spiral toward a.) You see the situation can be
even more complicated in Rn for high n.

The ‘-” definition of continuity, which we gave without discussing the no-
tion of limit, ignores any “choice” of direction or path by which you approach
a. It simply says that if you want to guarantee that f attains values close to
the value f(a), you simply need to be close to a itself.

3.1.5 Picturing
Many people said they had a hard time picturing the definition of continuity.

That’s perfectly normal. Indeed, even the most seasoned mathematicians
probably do not imagine the most general and crazy examples of continuity;
they may simply imagine something like the function f(x) = |x|.

This is also the power of abstract definitions; in life we sometimes have
to prove or understand things without being able to visualize them.

3.1.6 Understanding
Many people said they do not understand the ‘≠” definition. That is normal.

Let me share a quote from John von Neumann.
“In mathematics you don’t understand things. You just get used to them.”
I strongly disagree with this quote, but it rests on what you mean by

understanding. (Let’s not get into that discussion.) I give this quote note as
a model, but as comfort; even seasoned mathematicians feel like they do not
understand things.

An analogy I dislike, but will use anyway because it is helpful, is the
following: You may not understand how a car works, but you can still drive
it. Rest assured that most mathematicians do not understand everything
they use; and at some point, they have simply had to drive a car without
taking apart every component.

3.1.7 What’s the use of continuity?
This is a great question.

Let me give some sample applications:
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Theorem 3.1.7.1. Let [a, b] be a closed, bounded interval. Fix a function
f : [a, b] æ R. If f is continuous, then f attains a maximum and a minimum.

This is a very powerful theorem.
As a non-example, consider tan x, which does not attain a minimum or a

maximum—this shows the necessity of the interval of definition being closed.
In this class, we will generalize the above theorem to any continuous

function whose domain is compact. Compactness is a useful notion that
comes up over and over in mathematics—it is useful because it identifies a
large class of spaces that behave well and are easily controlled; it is also a
condition that is easy to check in many cases.

3.2 Some facts about metrics
Now let’s get back to metric spaces.

Exercise 3.2.0.1. Let (X, d) be a metric space. Prove that for any x, x

Õ œ X,

d(x, x

Õ) Ø 0.

Proof. Combining the triangle inequality and property zero, we have

d(x, x

Õ) + d(xÕ
, x) Ø d(x, x) = 0.

By symmetry, we have
2d(x, x

Õ) Ø 0.

Dividing by 2, we are done.

The above exercise shows that the notion of distance in a metric space
fits our physical intuition that the distance between any two points ought to
be non-negative. (And, by property zero, positive when x ”= x

Õ.)
Last time we left o� as we were about to study the continuity of the

identity function between various metric space structures on Rn.
Of course, there were four di�erent metric spaces. That means there are

a total of
4 ◊ 4 = 16

di�erent combinations of metric for which we would have to verify continuity.
That’s a lot. But here’s a useful fact that will cut down that number:
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Exercise 3.2.0.2. Fix three metric spaces

(X, d

X

), (Y, d

Y

), (Z, d

Z

)

and two functions f : X æ Y and g : Y æ Z.
Show that if both f and g are continuous, then so is the composition g¶f .

Proof. We must verify the following:
For all x œ X, and for all ‘ > 0, there exists ” such that

d

X

(x, x

Õ) < ” =∆ d

Z

(gf(x), gf(xÕ)) < ‘.

Well, by the continuity of g, we know that for all y (and in particular, for
y = f(x)) and for all ‘, there exists some ‘

Õ so that

d

Y

(f(x), y

Õ) < ‘

Õ =∆ d

Z

(gf(x), g(yÕ)). (3.2.1)

And by the continuity of f , we know that for all x, and all ‘

Õ, there exists ”

such that
d

X

(x, x

Õ) < ” =∆ d

Y

(f(x), f(xÕ)) < ‘

Õ
. (3.2.2)

Thus, given ‘, choose ‘

Õ satisfying (3.2.1), then choose ” satisfying (3.2.2).
We are finished.

3.2.1 Our favorite metrics on Rn

Last time we defined

1. The standard metric

d

std

(x, x

Õ) =
ı̂ıÙ

nÿ

i=1
(xÕ

i

≠ x

i

)2

2. The discrete metric

d

discrete

(x, x

Õ) =
Y
]

[
0 x = x

Õ

1 x ”= x

Õ

3. The taxicab metric

d

taxi

(x, x

Õ) =
nÿ

i=1
|xÕ

i

≠ x

i

|
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4. The l

Œ metric
d

l

Œ(x, x

Õ) = max
i=1,...,n

|xÕ
i

≠ x

i

|.

We have the identity function

id : Rn æ Rn

, x ‘æ x.

We can put any of the metric space structures above on Rn—for which choices
is the identity function continuous?

Example 3.2.1.1. Consider

id : (Rn

, d

std

) æ (Rn

, d

discrete

).

Is this a continuous function?

I want you now to get into groups and investigate.
Upshot: You should find that the above example is the only example for

which the identity function is not continuous.

3.2.2 A tip
How do you prove a function is continuous? In practice, it comes down to
understanding what the condition

If x

Õ is such that d

X

(x, x

Õ) < ”, then d

Y

(f(x), f(xÕ)) < ‘

means. To understand that such x

Õ “look like,” we first try to understand
what f(xÕ) might look like.

What does d

Y

(f(x), f(xÕ)) < ‘ mean? That is, what does it mean for
f(xÕ) to be distance less than ‘ apart from f(x)? It means—tautologically—
that f(xÕ) is in the following set:

y

Õ such that d

Y

(f(x), y

Õ) < ‘.

This is what one calls the open ball of radius ‘ centered at f(x) (with respect
to the metric d

Y

).

Example 3.2.2.1. We have drawn examples of open balls of radius 1 for
our various metrics on Rn.
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A common strategy to prove the continuity of a function f : X æ Y is
to understand the set of those x

Õ that end up in the open ball of radius ‘

centered at f(x). That is, under what circumstances do we have that

f(xÕ) œ { y

Õ such that d

Y

(f(x), y

Õ) < ‘. }?

This comes down to understanding the following:

What x

Õ are contained in the preimage f

≠1({ y

Õ such that d

Y

(f(x), y

Õ) < ‘. })?

In other words,

What isf≠1({ y

Õ such that d

Y

(f(x), y

Õ) < ‘. })? (3.2.3)

Note that x is always contained in this set.
Once you understand this set, you can ask the following: Is there an open

ball centered at x (of some radius ” > 0) contained in this set?
If you can find such a ”, and if you can do this for every ‘ > 0 and every

x œ X, you have proven the continuity of f : X æ Y .
Let me summarize. The following statements are more or less equivalent

descriptions of the process:

1. To show f : X æ Y is continuous, you must answer in the a�rmative:
“Is there an open ball of radius ” > 0 centered at x contained in the
preimage of the open ball of radius ‘ centered at f(x)?” for every choice
of x œ X and for every choice of ‘ > 0.

2. Continuity comes down to verifying that you can always find open balls
centered at x contained in the preimage of open balls centered at f(x).

We got back together and discussed. We discussed the following three
examples:

• id : (Rn

, d

std

) æ (Rn

, d

std

).

• (Rn

, d

std

) æ (Rn

, d

taxi

).

• (Rn

, d

std

) æ (Rn

, d

discrete

).
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3.2.3 The identity function from a metric space to it-
self

Proposition 3.2.3.1. id : (Rn

, d

std

) æ (Rn

, d

std

) is continuous.

Remark 3.2.3.2. We are verifying that f is continuous for the case X =
Y = Rn, d

X

= d

Y

= d

std

, and f = id. The proof will thus use the notations
X, Y, d

X

, d

Y

to make clear when I am speaking of the domain, or of the
codomain.

For the proof, we follow the tip:

Proof of Proposition 3.2.3.1. Note that for any x œ Rn, f(x) = x because
we have chosen f = id.1 Note also the following:

d

X

(x, x

Õ) = d

std

(x, x

Õ)
= d

std

(f(x), f(xÕ))
= d

Y

(f(x), f(xÕ)). (3.2.4)

That is,
d

X

(x, x

Õ) = d

Y

(f(x), f(xÕ)). (3.2.5)

As such, given any ‘ > 0, let us simply set ” to be any positive real number
less than or equal to ‘. Then if d

X

(x, x

Õ) < ”, we have that d

Y

(f(x), f(xÕ)) <

‘. This shows f is continuous.

Note that we did not use anything about Rn or d

std

in the proof—indeed,
the string of equalities uses the notation d

std

, but the equalities hold for any
choice of metric so long as d

X

= d

Y

. We conclude:

Proposition 3.2.3.3. Let X = Y and d

X

= d

Y

, and let f : X æ Y be the
identity function. Then f is continous.

Proof. Note that (3.2.5) is true when f = id and d

X

= d

Y

. Then follow the
rest of the proof of Proposition 3.2.3.1.

1That is, we have chosen f to be the identity function.
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3.2.4 Isometric embeddings and isometries
In fact, we have done something even better. We do not need X to equal Y ,
nor for d

X

to equal d

Y

. The proof of Proposition 3.2.3.1 relied only on the
equality (3.2.5). This is a useful condition, so let’s give it a name.
Definition 3.2.4.1. Let (X, d

X

) and (Y, d

Y

) be metric spaces. Fix a function
f : X æ Y . We say that f is an isometric embedding if f preserves distances.
That is,

d

X

(x, x

Õ) = d

Y

(f(x), f(xÕ))
for all x, x

Õ œ X.
If f is further a bijection, we say that f is an isometry.

Proposition 3.2.4.2. Let (X, d

X

) and (Y, d

Y

) be metric spaces. Fix a func-
tion f : X æ Y . If f is an isometric embedding, then f is continuous. In
particular, any isometry is continuous.
Proof. Follow the proof of Proposition 3.2.3.1 beginning with (3.2.5).

3.2.5 From standard to taxi
Then we verified that the identity function from Rn with the standard metric
to Rn with the taxicab metric is continuous:
Proposition 3.2.5.1. Let (X, d

X

) = (Rn

, d

std

) and (Y, d

Y

) = (Rn

, d

taxi

).
Then the identity function

f = id : X æ Y

is continuous.
Proof. Fix x œ X. We note that the open ball of radius ‘ centered at f(x)2 is
a diamond centered at f(x), whose distance from f(x) to any of the corners
of the diamond is ‘. Because f = id, the preimage of this diamond is the
diamond itself (now considered as a subset of X).

In R2, we drew a picture to see that any diamond with ‘ > 0 “clearly”
contains an open ball of radius ” > 0 centered at x, so long as ” is small
enough. For a picture and precise formula, see the scanned notes.

To prove for Rn for general n, one employs the formula from the scanned
notes to verify indeed that one can find ” > 0 small enough so that the
continuity condition holds.

2with respect to d

Y

= d

taxi

!)
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3.2.6 From standard to discrete
Proposition 3.2.6.1. The function

id : (Rn

, d

std

) æ (Rn

, d

discrete

)

is not continuous.

Proof. It su�ces to exhibit an x œ X and ‘ > 0 such that for any ” > 0,
there exists some x

Õ such that

d

X

(x, x

Õ) < ” and d

Y

(f(x), f(xÕ)) Ø ‘.

For this, choose ‘ to be any positive real number less than or equal to 1. We
saw last time that the open ball of radius ‘ (with respect to d

discrete

) centered
at f(x) is then a single point, given by f(x) itself.

Because f = id, the preimage of this set is the same set—that is, the
preimage if the set {x} consisting of a single point, called x.

Of course, for any ” > 0, the open ball of radius ” centered at x can not

be contained in this singleton set.
















