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Lecture 4

4.1 Some confusions
Students have come in with some confusions, so let me discuss them.

1. The notation
(X, d

X

)
does not refer to some point on R2. It is a pair of things, but it is not a
pair of numbers. For example, X is a set—perhaps the set of bananas
in this room—and d

X

is a metric on this set.

2. When I write something like

f : X æ Y (4.1.1)

I mean a function from X to Y , and I have called the function f . Now,
when I have chosen two metric spaces, I will often write

f : (X, d

X

) æ (Y, d

Y

). (4.1.2)

The two notations (4.1.1) and (4.1.2) mean the same thing. That is, the
latter notation still encapsulates a function from X to Y . The reason
I include the metrics d

X

and d

Y

in the notation is because it is often
important to remind the reader which metrics we are considering.1

3. Make sure you understand my notation using x œ Rn and the indices
x

i

. A point x œ Rn is determined by a finite collection

(x1, x2, . . . , x

n

)
1As we have seen, the same set may allow many di�erent metrics.
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28 LECTURE 4.

of real numbers. Likewise, a point x

Õ œ Rn is determined by a collection

(xÕ
1, x

Õ
2, . . . , x

Õ
n

)

of real numbers. So when I write a formula like

d

l

Œ(x, x

Õ) = max
i=1,...,n

|xÕ
i

≠ x

i

|

I mean that I consider the collection of real numbers2

{|xÕ
1 ≠ x1|, |xÕ

2 ≠ x2|, . . . , |xÕ
n

≠ x

n

|}

and I take the maximum number in this set (consisting of n real num-
bers). As an example, if n = 4 and I take two points

x = (fi,

Ô
2, 1, 1)

and
x

Õ = (8, 2,

Ô
3, 1)

then we would have

d

l

Œ(x, x

Õ) = max{|8 ≠ fi|, |2 ≠
Ô

2|, |
Ô

3 ≠ 1|, |1 ≠ 1|}

so
d

l

Œ(x, x

Õ) = 8 ≠ fi.

4.2 Last time
Last time we talked about the continuity of the following functions:

1. id : (Rn

, d

std

) æ (Rn

, d

std

).

2. id : (Rn

, d

std

) æ (Rn

, d

taxi

).

3. id : (Rn

, d

std

) æ (Rn

, d

discrete

).
The main toolkit I wanted you to come away with was the following:

To investigate the continuity of a function f : X æ Y , you have to see
if you can fit some open ball (of radius ” > 0) into the preimage of an open
ball (of radius ‘ > 0).3

2Again, the x

Õ
i

are the coordinates of the point x

Õ, and the x

i

are the coordinates of
the point x

3The former is centered at x œ X, the latter is centered at f(x) œ Y .
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4.3 Open sets of a metric space

4.3.1 Open balls
Today, I want to get us used to talk about open sets. Let’s record as a formal
definition some of the terms we’ve been using.

Definition 4.3.1.1. Let (X, d

X

) be a metric space. Fix x œ X and real a
number r > 0.

The open ball of radius r, centered at x, is the set

{x

Õ œ X such that d

X

(x, x

Õ) < r.}

We will use any of the following notations4 to denote this set:

Ball(x; r) B(x; r) B

dX (x; r) B

X

(x; r).

Remark 4.3.1.2. Some authors extend the definition to the case r = 0.
Then the open ball of radius 0 is the empty set; but we will not follow this
convention.

4.3.2 Definition of open subset
Definition 4.3.2.1 (Open set of a metric space). Let (X, d

X

) be a metric
space, and let A µ X be a subset.

We say that A is open if it can be written as the union of open balls.

4.3.3 Examples of open sets
Example 4.3.3.1. Let (X, d

X

) be a metric space. Fix x œ X and r > 0.
Then A = Ball(x; r) is an open set; it can be written as a union of a single
open ball—namely Ball(x; r).

The following is one of the more confusing examples for people.

Example 4.3.3.2. Let (X, d

X

) be a metric space and let A = ÿ µ X be the
empty set.

Then A is open.
4Having all this notation is confusing, but you could already see why it was useful to

have notation like d

X

and d

Y

to distinguish di�erent metrics; these ri�s/modifications to
the notations also come in handy when disambiguating certain metric spaces.
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30 LECTURE 4.

Remark 4.3.3.3 (Digression into unions). Let me explain this a little bit.
When you think of unions of sets, you may think of something pictorial like
a Venn diagram.

(Draw a Venn diagram.)
How do you take a union of sets? Well, you first specify the sets you want

to take the union of, and then you combine their elements into a single set.
What if you specify no sets at all? Then the union of this collection of

sets (the empty collection) is the empty set.
Some people are confused by Example 4.3.4.2 because they are only used

to seeing unions of some non-zero number of sets.
But let me reiterate: A union of zero-many sets is the empty set. So

the empty set can be written as the union of a collection (albeit an empty
collection) of open sets.

Example 4.3.3.4. Let (X, d

X

) be a metric space. Then the set A = X itself
is open.

To see this, fix any r > 0, and consider the collection

{Ball(x; r)}
xœX

.

This is a collection of open balls. Let’s explain the notation. The curly
brackets {...} means we are defining a set. The subscript x œ X means for
every x œ X, we can specify an element in this set. Which element? The
notation Ball(x; r) means that the open ball Ball(x; r) is the element.

Confusingly, this is an example of a set of sets. You will get used to this.
Now, consider the union

€

xœX

Ball(x; r).

This is a potentially gigantic union. There are many sets we are taking the
union of—-for every x œ X, we are considering the open ball of radius r, and
we are taking the union of every single one of these balls.

Note that this union is contained in X, as each ball is a subset of X.
Moreover, any element of X is contained in the union, as any x œ X is
contained in the ball Ball(x, r). Thus,

X =
€

xœX

Ball(x; r).

So X is open (as it is written as a union of open balls).
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Example 4.3.3.5. There is an even larger collection one can write down to
prove that X is open. Consider the collection

{Ball(x, r)}
xœX,r>0

where now we are considering an open ball not just for every choice of x œ X,
but also for every choice of real number r > 0.

Let me discuss a common confusion that this example can illustratively
dispel—note that even if r ”= r

Õ, the balls Ball(x, r) and Ball(x, r

Õ) may be
the same. (We saw this in the discrete metric; for example, r = 0.5 and
r

Õ = 0.4 give the same open balls.)
Thus, the subscripts in the set notation do not need to uniquely specify

an element of the set.
Another confusion: When exhibiting that a set A is open, you do not

need to choose some e�cient collection of open balls. For example, we have
seen two ways to exhibit X as an open set. The second way we have seen
(which not only takes an open ball for every x, but also for every r > 0) is
far less “e�cient” because we have so many open balls; that is fine. Do not
be tempted to make a “snug” or “just right” collection of open balls to form
a set, as overkill is sometimes useful.

Exercise 4.3.3.6. Let X = R2 and let A be the set

A = {x œ R2 such that d

l

Œ(0, x) < ”}.

This is the “open” square centered at the origin of width 2”. (Put another
way, this is the open ball of radius ” in (R2

, d

l

Œ). For which of the following
metrics on X is A an open set?

1. d

std

2. d

discrete

3. d

taxi

4. d

l

Œ

Proof. All of them!
We must write A as the union of open balls. Thus, for every x œ A, we

must exhibit some open ball contained in A and containing x.
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Let us tackle d

std

first. Given x = (x1, x2), there is a well-defined (stan-
dard) distance to the boundary of A. Namely, consider the distances

|” ≠ x1|, | ≠ ” ≠ x1|, |” ≠ x2|, | ≠ ” ≠ x2|.

These measure the distance of x from the edges of the square. Note that
because A is the open square5, each of these distances is non-zero. Let r

x

be
the minimum of the four distances above. Then Ball

dstd
(x; r

x

) is contained
iN A. Thus we see that

€

xœA

Ball
dstd

(x; r

x

) = A.

This verifies that A is an open set in (R2
, d

std

).
I’ll omit the proofs of the others. Note that d

l

Œ is the “easiest” case
because A is already an open ball in that case.

As for the other metrics, you simply need to find an r

x

for every x such
that the open ball of radius r

x

(with respect to the chosen metric) is contained
in A. For example, this is easy for the discrete metric—just choose r

x

to be
anything less than or equal to 1. For the taxicab metric, note that the
diamond of corner-to-center length r fits inside the standard ball of radius r,
so you could choose the same r

x

as for d

std

.

Exercise 4.3.3.7. Let X = R2 and let A = {x} consist of a single point.
For which of the following metrics on X is A an open set?

1. d

std

2. d

discrete

3. d

taxi

4. d

l

Œ

Proof. Only for the discrete metric. Note that any open ball of positive
radius in the other metrics contains at least two points (in fact, any open
ball of positive radius contains infinitely many points in any of the non-
discrete metrics); but A contains only one point, so A could not contain any
open ball of positive radius. In particular, A cannot be written as the union
of open balls.

5meaning the “boundary” of A is not part of A
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Exercise 4.3.3.8. Let X = R and let A = [≠3, 3] be the closed interval
from -3 to 3. For which of the following metrics on X is A an open set?

1. d

std

2. d

discrete

3. d

taxi

4. d

l

Œ

Proof. Only the discrete metric.
To see why A is not open in the other metrics, note that if A can be

written as a union of open balls, then in particular, there must be some open
ball that contains 3 œ A, and is contained inA.

But in any of the non-discrete metric, if an open ball B of positive radius
contains 3, it must also contain some number larger than 3. But such a
number is not contained in A. In particular, B could not be contained in A.

Finally, A is open in the discrete metric because we can write

A =
€

xœA

Ball
ddiscrete

(x; r)

for any r œ (0, 1].

4.4 Open sets and continuity
In math, when you’ve found a way to translate one sophisticated thing into
another, you’ve discovered something wonderful. We’re about to discover
something wonderful:

Theorem 4.4.0.1. Let (X, d

X

) and (Y, d

Y

) be metric spaces. Fix f : X æ Y

a function. The following are equivalent:

1. f is continuous.

2. For any open set V µ Y , the preimage f

≠1(V ) is open.
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4.4.1 Centering open balls
The proof will be streamlined if we utilize the following lemma:

Lemma 4.4.1.1. Let (X, d

X

) be a metric space, and fix x œ X and r > 0.
Suppose that x

Õ is contained in Ball
X

(x, r). Then there exists r

Õ
> 0 such

that
Ball(xÕ

, r

Õ) µ Ball(x, r).
In English, if x

Õ is a point contained in an open ball (centered at a possi-
bly di�erent point x), then one can always find an open ball centered at x

Õ

contains in the original open ball.

Proof. We set
r

Õ = r ≠ d

X

(x, x

Õ).
Indeed, if any other point w is contained in Ball(xÕ

, r

Õ), the triangle inequality
says

d

X

(x, w) Æ d

X

(x, x

Õ) + d

X

(xÕ
, w)

but the righthand side satisfies

d

X

(x, x

Õ) + d

X

(xÕ
, w) < d

X

(x, x

Õ) + r

Õ = d

X

(x, x

Õ) + r ≠ d

X

(x, x

Õ) = r.

So we are finished.

4.4.2 Proof of Theorem ??.
Recall that to prove two statements are equivalent, we need to prove that
one implies the other, and vice versa.

Proof. We first prove that (1) implies (2). Let V µ Y be open. We must
prove that if f is continuous, then f

≠1(V ) is open. So choose x œ f

≠1(V ).
The goal is to find some ball B

x

of positive radius containing x and contained
in f

≠1(V ). (If we can do this for all x œ f

≠1(V ), then we have that

f

≠1(V ) =
€

xœf

≠1(V )
B

x

and this would show that f

≠1(V ) is open.)
Since V µ Y is open, it can be written as a union of open balls. In

particular, there is some open ball Ball
Y

(y, r) such that

f(x) œ Ball
Y

(y, r) µ V.
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Claim One: There exists some ‘ > 0 such that Ball
Y

(f(x), ‘) µ Ball
Y

(y, r).
Indeed, this is the reason I introduced Lemma ??. Using that lemma, Claim
One is proven.

Now, by the continuity of f , there exists ” such that d

X

(x, x

Õ) < ” =∆
d

Y

(f(x), f(xÕ)) < ‘; in particular, there is some ” such that the ball of radius
” centered at x is contained in f

≠1(Ball
Y

(f(x), ‘)). But we know that

Ball
Y

(f(x), ‘) µ Ball
Y

(y, r) µ V

so in particular,
Ball

X

(x, ”) µ f

≠1(V ).
We have accomplished our goal. This proves that (1) implies (2).

Now let us prove that (2) implies (1). If we assume that the preimage of
any open set is open, we must prove that f is continuous.

So fix x œ X and fix ‘ > 0. Then the open ball V = Ball
Y

(f(x), ‘) is an
open subset of Y , so in particular, we know that f

≠1(V ) is an open subset
of X. By definition, then, it can be written as the union of open balls—in
particular, there is some open ball containing x. By Lemma ??, we may
choose this ball to be centered at x, and we will write its radius as ”. By
construction, this ball is contained in f

≠1(V ), and we thus have

f(Ball
X

(x, ”)) µ V = Ball
Y

(f(x), ‘).

In other words, if any point x

Õ is within ” of x, it follows that d

Y

(f(x), f(xÕ)) <

‘. This completes the proof.


