
Lecture 7

Tuesday, September 17th

7.1 Non-negativity of metrics
Exercise 7.1.0.1. Let (X, d) be a metric space. Show that d(x, x

Õ) Ø 0 for
any x, x

Õ œ X.

Proof. Use the triangle inequality for x = x

Õ = x

ÕÕ. Then

0 = d(x, x

ÕÕ) Æ d(x, x

Õ) + d(xÕ
, x

ÕÕ) = 2d(x, x

Õ).

So (dividing the beginning and the end by 2), we see d(x, x

Õ) Ø 0.

7.2 Simplifying the verification of continuity
Exercise 7.2.0.1. Let (X, d

X

) and (Y, d

Y

) be metric spaces, and fix a func-
tion f : X æ Y . Show the following are equivalent:

1. For any open set V , f

≠1(V ) is an open set.

2. For any open ball Ball
‘

(y), f

≠1(V ) is an open set.

Proof. 1 implies 2: Any open ball is an open set; so setting V = Ball
‘

(y), 1
implies 2.

2 implies 1: We know that any open set V is a union of open balls, so

V =
€

Ball
‘

(y)

1
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for some collection of open balls. Thus

f

≠1(V ) =
€

f

≠1(Ball
‘

(y))

where the righthand side is a union of open subsets of X. In homework you
proved that any union of open subsets is again open. Thus f

≠1(V ) is open.
This proves 2 implies 1.

Putting together everything, we have proven the following so far in this
class:

Theorem 7.2.0.2. Let (X, d

X

) and (Y, d

Y

) be metric spaces. Fix a function
f : X æ Y . The following are equivalent:

1. f is continuous.

2. The preimage of any open subset of Y is an open subset of X.

3. The preimage of any open ball of Y is an open subset of X.

4. f sends convergent sequences in X to convergent sequences in X.

7.3 From homework
Let X and Y be metric spaces. Define the following metric on X ◊ Y :

d((x, y), (xÕ
, y

Õ)) = d

X

(x, x

Õ) + d

Y

(y, y

Õ).
Show that the projection map (x, y) ‘æ x is continuous.

Proof. There are two ways you could do this.
(i) Using ‘-”. Fix an element of the domain, (x

0

, y

0

), and some ‘ > 0. We
must show the existence of some ” such that

d((x
0

, y

0

), (x, y)) < ” =∆ d

X

(x
0

, x) < ‘. (7.3.1)

I claim any ” Æ ‘ works. This is because

d((x
0

, y

0

), (x, y)) = d

X

(x
0

, x) + d

Y

(y
0

, y) Ø d

X

(x
0

, x).

Where the last inequality follows because d

Y

(y
0

, y) Ø 0. Thus (7.3.1) follows
if ” Æ ‘.
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(ii) Using that a function is continuous if and only if the preimage of any
open set is open.

Let’s call our function fi, so fi(x, y) = x. By the exercise earlier this
lecture, we must verify that for any open ball in X, the preimage is an open
subset of X.

So fix an open ball B

‘

(x) µ X. Here, x œ X and ‘ > 0. By definition of
fi, the preimage of this is the set of all pairs (x, y) such that x is in the ball,
and y is arbitrary. This can be written as a union of open balls as well:

€

r,x

Õ
such that B

r

(x

Õ
)µB

‘

(x)

€

yœY

B

r

((xÕ
, y))

Remark 7.3.0.1. Note that (ii) seems a little bit more complicated. Re-
gardless, we have two very di�erent-looking proofs of the same fact. This is
a good sign that the equivalent criteria for continuity are appreciably di�er-
ent, and hence useful! (Having two very di�erent ways to tackle the same
problem is a gift.)

7.4 Intuition for open sets in metric spaces
What is the intuition for how to think about an open set in a metric space?
Recall that an open set in a metric space is any subset that can be written
as a union of open balls. Recall also that we proved the following lemma last
time I lectured: If x is contained in some open ball Ball

‘

Õ(xÕ), then there is
another open ball Ball

‘

(x), centered at x, taht is contained in Ball
‘

Õ(xÕ).

Corollary 7.4.0.1 (Of the Lemma). Let (X, d) be a metric space and let
U µ X be an open subset. Then for any x œ U , there exists an open ball
centered at x.

In fact, we have

Proposition 7.4.0.2. Let (X, d

X

) be a metric space and fix a subset U µ X.
The following are equivalent:

1. U is an open subset.

2. For any x œ U , U contains an open ball of some (small) positive radius
centered at x. That is, there exists ” > 0 so that Ball(x; ”) µ U .
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Proof. 1 implies 2. We use the (re)centering lemma from last time I lectured.
If U is open, it’s a union of open balls:

U =
€

–

Ball(x
–

, ”

–

)

where – indexes some collection of centers x

–

and radii ”

–

. Thus for any
x œ U , there is some – so that x œ Ball(x

–

, r

–

). By the (re)centering lemma,
this means that there is some ” so that

Ball(x, ”) µ Ball(x
–

, r

–

).
In particular,

Ball(x, ”) µ U.

2 implies 1. For every x œ U , choose ”

x

so that Ball(x, ”

x

) µ U . Then we
have that €

xœU

Ball(x, ”

x

) = U.

To see this equality, note that the righthand side is contained in U (because
a union of subsets is still a subset). The lefthand side is contained in the
righthand side: Given x

Õ œ U , note that Ball(xÕ
, ”

x

Õ) is one of the balls in the
union on the lefthand side, and in particular, x

Õ œ Ball(xÕ
, ”

x

Õ).
Remark 7.4.0.3. This proposition is supposed to give you intuition for what
open sets look like: U is open if and only if for any x œ U , x has “enough
wiggle room,” or “enough breathing room” in U . By “wiggle room,” I mean
there is some ” so that x can move around in an open ball of radius ” without
leaving U .
Warning 7.4.0.4. The notion of being an open subset depends on the metric
space we are in. That is, when we say “U is open,” we have a metric space
in mind of which U is a subset.
Example 7.4.0.5 (Of sets that are not open). Let A µ R be a closed
bounded interval. Then A is not open. For example, at the endpoint x of
A, no open interval about x is fully contained in A. (To see this: Any open
interval (x≠ ‘, x+ ‘) contains some element larger than, or some element less
than, x. But because x is an endpoint, it is either the minimal or maximal
element of A. Without loss of generality, assume x is minimal. Then A could
not contain an element less than x itself.)

Likewise, let A µ R2 be a closed bounded interval. Then A is not open.
For example, even if x is in the interior of A, no open ball of R2 fits inside
A.
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7.5 Beyond metric spaces
So just as we’re getting used to metric spaces, I want to suggest to you that
the zoo of metric spaces is too constricting. For the next half an hour, I’d
like you to think about the following problems:

1. Can you give the circle a metric space structure? How about the
sphere? How? Can you give any subset of Rn a metric space structure?
Are they meaningful?

2. Consider the “set of all lines through the origin” in R2. Make sure
you think about what this means. Can you give this a metric space
structure?

3. Consider the shape you would get if you were to take a sheet of paper,
and carefully glue/tape two opposing edges together. Can you give this
a metric space structure?

What we saw in class is that the first example is not so bad to tackle: Any
subset A µ X of metric space (X, d

X

) can be given a metric space structure.

Definition 7.5.0.1. Let (X, d

X

) be a metric space and let A µ X be a
subset. The subset metric, or induced metric on A is

d

A

(x, x

Õ) := d

X

(x, x

Õ).

The subset metric is indeed a metric on A. I’ll the proof to you as an
exercise.

In class we had some di�culty with the set of lines in R2. We had the
insight to try to assign to each line an “angle,” but this assignment didn’t
seem continuous. And depending on how we made the shape obtained by
gluing a sheet of paper along its edges, the metrics could be di�erent.

But the notion of having “wiggle room”—we were supposed to discover—
is one we can articulate better.

Main idea: Sometimes, it’s easier to think about wiggle room (open sets)
than it is to think about metrics.

We’ll begin next time with topological spaces.


