
Lecture 8

Thursday, September 19th

8.1 Some announcements

8.1.1 Collaboration policy
Some of your homeworks are far too similar. Please read the collaboration
policy I’ve put online. In short, you can collaborate, and you can consult
sources, but when you are writing (whether on a laptop, phone, or paper) your
homework for submission, you must be alone and not using any resources.

8.1.2 Multiple choice
From now on, multiple choice responses for homework will be submitted on-
line. Links will be on the website every week. Don’t let the convenient format
fool you—the multiple choices are often the hardest part of the homework.
You do not need to hand in paper submissions. These are always do be-
fore 1:50 PM on Tuesdays. Anything submitted after 1:50 PM will not be
accepted.

8.1.3 Next homework
For the next proof homework, I will scan copies of your submissions and
share them with the class. You will get to see the work of other classmates;
and your classmates will see your submissions, too.

Put your names on the homeworks; I will anonymize them the best I can
when I share with class.
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8.2 More on open sets
Last time we saw the following intuition for open sets in metric spaces: A
subset U µ X is open if and only if for every x œ U , there is a (small) open
ball of positive radius, centered at x and contained in U . We interpreted this
to mean that a set U is open if and only if every x œ U has “wiggle room”
inside U .

Remark 8.2.0.1. In class discussions and in homeworks, I have also seen
some of you engage with the notion of a “boundary” of a set. We will talk
about this in due time.

A philosophy I’ve mentioned more than once: To study objects, we need
to study the functions between them. This philosophy is not at all obvious
in your earliest serious math classes, but you’ve at least seen that there
are many interesting functions f : R æ R to explore (in calculus class, for
example). But it is an important philosophy regardless.

What we have seen so far in class—though you may not have noticed
it—is that for a map (X, d

X

) æ (Y, d

Y

) to be continuous certainly depends
on the metrics in play, but that it doesn’t depend on the entire data of the
metrics. For example, we have seen that to check whether a function is
continuous, we only need to check whether preimages of open sets are open.

In other words: Continuity depends only on open sets.

Remark 8.2.0.2. Combining our intuition of “wiggle room” with our “open
set” test for continuity, we arrive at the following intuition. A function
f : X æ Y is continuous if and only if: Every x œ X has wiggle room1 to
stay within any specified wiggle room2 of f(x).

So here’s a natural question: Does the collection of open sets of a metric
space “remember” the metric of the metric space? Put another way, if (X, d

X

)
is a metric space, and T is its collection of open sets, does T determine d

X

?
The answer is no:

Theorem 8.2.0.3. Let T
std

denote the collection of open sets in Rn for d

std

.
Likewise, we let T

taxi

and T
l

Œ denote the collections of open sets in Rn

with respect to d

taxi

and d

l

Œ .
1i.e., a ball of radius ”

2a ball of radius ‘
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Then
T

std

= T
taxi

= T
l

Œ
.

Proof. I will sketch a proof.
Let U µ Rn be open with respect to the standard metric. Then for any

x œ U , there is some ”

std

so that
Ball

std

(x; ”

std

) µ U.

But given ”

std

, I claim there exists ”

taxi

such that
Ball

taxi

(x; ”

taxi

) µ Ball
std

(x; ”

std

).
That is, any open ball in the standard metric (centered at x) contains an open
ball in the taxicab metric (also centered at x). I will just draw a picture of
this in class. (It turns out you could take ”

taxi

= ”

std

because the open ball
in the standard metric is convex.)

We conclude that if U is open with respect to d

std

, it is open with respect
to d

taxi

.
Conversely, let U be open with respect to d

taxi

. Then for any x œ U ,
there is an open ball Ball

taxi

(x, ”

taxi

) centered at x and contained in U . You
can check that the shortest standard distance from x to a “wall” of this
taxicab-ball (which is a diamond-shaped region) is given by

”

taxi

Ò
1/n

where n is the dimension of Rn. Thus we see that
Ball

std

(x, ”

taxi

Ò
1/n) µ Ball

taxi

(x, ”

taxi

) µ U

so U is open with respect to d

std

as well.
This shows T

std

= T
taxi

.
A similar proof shows that T

std

= T
l

Œ .

Thus, although the metrics on Rn are distinct, they give rise to the same

collection of open sets.
This proves the following:

Corollary 8.2.0.4. The identity functions
(Rn

, d

std

) æ (Rn

, d

taxi

) (Rn

, d

std

) æ (Rn

, d

l

Œ)
(Rn

, d

taxi

) æ (Rn

, d

std

) (Rn

, d

taxi

) æ (Rn

, d

l

Œ)
(Rn

, d

l

Œ) æ (Rn

, d

taxi

) (Rn

, d

l

Œ) æ (Rn

, d

std

)
are all continuous.
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Proof. The preimage of U is given by U . Moreover, if U is open with respect
to one of the metrics above, it is also open with respect to any of the others
by the previous result. This shows that the preimage of any open subset is
open, hence the identity function is continuous.

Corollary 8.2.0.5. Let (Y, d

Y

) be a metric space. Let f : Rn æ Y be a
function. Then f is continuous with respect to the standard (or taxi, or l

Œ)
metric if and only if it is continuous with respect to any of three metrics
above (standard, taxi, or l

Œ).

Proof. Let V µ Y be open. Then f

≠1(V ) is open with respect to one of the
three metrics above if and only if it is open with respect to all of them.

Remark 8.2.0.6. This is the first hint that a notion of distance helps detect
continuity, but continuity does not depend on a notion of distance! How
great is that?

8.3 Constructing new spaces
So we have seen two kinds of things with the word “space” in the name. Let
me recall them both:

Definition 8.3.0.1. A metric space is a pair (X, d) where X is a set and
d : X ◊ X æ R is a function satisfying:

(0) For all x, x

Õ œ X, d(x, x

Õ) = 0 ≈∆ x = x

Õ.

(1) For all x, x

Õ œ X,d(x, x

Õ) = d(xÕ
, x), and

(2) For all x, x

Õ
, x

ÕÕ œ X, we have that

d(x, x

Õ) + d(xÕ
, x

ÕÕ) Ø d(x, x

ÕÕ).

Definition 8.3.0.2. A topological space is a pair

(X,T)

where X is a set, and T is a collection of subsets of X, satisfying the following
three properties:

1. Both ÿ and X are elements of T.
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2. If U

1

, . . . , U

k

is a finite collection of elements of T, then the intersection
U

1

fl . . . fl U

k

is an element of T. That is, T is closed under finite
intersections.

3. If A is an arbitrary set and A æ T is a function (so for every – œ A
we have an element U

–

œ T) then the union
€

–œA

U

–

is also in T. That is, T is closed under arbitrary unions.

Definition 8.3.0.3. We will call T a topology on X, and any element U œ T
will be called an open subset of X.

Example 8.3.0.4. Let (X, d

X

) be a metric space, and let T be the collection
of open sets determined by d

X

. (That is, U œ T if and only if U is a union
of open balls.) Then you proved in homework that (X,T) is a topological
space.

Definition 8.3.0.5. Let (X, d

X

) be a metric space and let T be the collection
of open sets with respect to d

X

. We say that T is the topology induced by
the metric.

Remark 8.3.0.6. Note that these definitions have incredibly di�erent fla-
vors. For example, the notion of metric space depends very much on numer-

ical or quantitative statements—meaning we rely on properties of the real
line. (For example, we rely on the fact that we know how to add elements of
R, and on the fact that we knowhow to compare the sizes of elements of R.)

In contrast, the definition of topological space is much more barren—it
does not even need mention of the real line. It only relies on the fact that we
can consider subsets of a set X, and that we can take unions and intersections
of subsets.

Remark 8.3.0.7. This barrenness is both a strength and downside of the
definition. The downside is that it takes a lot to get used to. But the
strength is that one can speak of many interesting phenomena under the
same umbrella—even if we cannot measure distances. In some sense, it frees
us from our dependence on distance.

Though I have not framed things this way, we have seen that we can
construct new metric spaces from old ones. For example:
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1. If (X, d) is a metric space, then any subset A µ X can be made into a
metric space under the subset metric.

2. If (X, d

X

) and (Y, d

Y

) are metric spaces, then the product X ◊ Y can
be made into a metric space.

Warning 8.3.0.8. There are many non-equivalent ways to make X ◊Y into
a metric space. This was explored a little bit in one of the exercises in-class;
and it already visible in the case of X = Y = R.

For example, R2 has many di�erent metrics, as we’ve seen. In parallel,
X ◊ Y can be given any of the following metrics:

1. d((x, y), (xÕ
, y

Õ)) = d

X

(x, x

Õ) + d

Y

(y, y

Õ). (If X = Y = (R, d

std

), this
gives rise to the taxicab metric in R2.)

2. d((x, y), (xÕ
, y

Õ)) =
Ò

d

X

(x, x

Õ)2 + d

Y

(y, y

Õ)2. (If X = Y = (R, d

std

), this
gives rise to the standard metric in R2.)

3. d((x, y), (xÕ
, y

Õ)) = max{d

X

(x, x

Õ), d

Y

(y, y

Õ)}. (If X = Y = (R, d

std

),
this gives rise to the l

Œ metric in R2.)

Remark 8.3.0.9 (Quotients will become easy). Last time, we saw an ex-
ample where given S

1 µ R2, it was very easy to construct a metric on S

1

by just using the subset metric. But when we had to think about the set of
lines in R2, or the cylindrical shape formed by gluing two edges of a sheet of
paper together, it was not so obvious how to define a metric that everybody
agreed on.

These latter two examples are examples of “quotient spaces.” It turns out
that while it is very di�cult to naturally put metrics on quotient spaces, it
is very easy to put a topology on them.

For now, let’s see that it is easy to construct topologies on subsets and
on product sets, just as it was easy to construct metrics on them. If you
believe that quotients are also easy places to construct topologies, we see
that working with topological spaces has a lot of pros:

1. It’s easy to construct new spaces, and

2. The notion of continuity can be expressed purely in terms of open sets.
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8.3.1 Subset topology
Exercise 8.3.1.1. Let (X,T) be a topological space, and fix a subset A µ X.
Define

T
A

to consist of those subsets W µ A such that W = U fl A for some U œ T.
(That is, a subset of A is declared open if and only if it is the intersection of
A with an open set of X.)

Prove that T
A

is a topology on A.

Proof. We must verify the three properties:

1. ÿ œ T
A

because ÿ fl A = ÿ and ÿ œ T. Likewise, A œ T
A

because
A = X fl A and X œ T.

2. Consider a finite collection W

1

, . . . , W

k

œ T
A

. For each W

i

, we know

W

i

= U

i

fl A

for some U

i

œ T. Then

W

1

fl . . . fl W

k

= (U
1

fl A) fl . . . (U
k

fl A) = (U
1

fl . . . fl U

k

) fl A

and this last term is an intersection of an open set U

1

fl . . .flU

k

with A.
(Note that the intersection of the U

i

is open because T is a topology.)

3. Now fix an arbitrary collection {W

–

}
–œA. Then for each –, there exists

some U

–

œ T such that W

–

= U

–

fl A. So
€

–

W

–

=
€

–

(U
–

fl A) = (
€

–

U

–

) fl A.

The set in the parentheses is open because T is a topology; hence this
intersection is in T

A

by definition of T
A

.

Definition 8.3.1.2. Let (X,T) be a topological space and A µ X a subset.
The topology T

A

on A is called the subset topology on A.
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Remark 8.3.1.3. The above proof is typical of the kinds of proofs you’ll see
in general topology—the formulas are formulas involving intersections and
unions of sets, and the way we index these intersections and unions take a
bit of getting used to. This is inherent in the definition of topological space:
Because the definition only uses tools of sets (intersections, unions, et cetera)
so too will the proofs use such tools.

This is contrast to metric spaces, where we got to use real numbers,
additions, and inequalities.
Example 8.3.1.4. Let X = R2 with the standard topology (induced by
the standard metric—or the taxicab metric, or the l

Œ metric). And let
A = S

1 µ X be the unit circle. Let us endow A with the subset topology.
Then a subset W µ A is open if and only if it is the intersection of an

open set of R2 with the circle. You should try drawing some examples. For
instance, any open interval on the circle is an open subset. The circle itself
is an open subset, too.

Note that it is impossible for you to draw every open subset of R2; there
are just too many. One of the powers of the definition of topological space
is that you don’t need to know what all open subsets are. Often, you’ll only
need to know some basic open subsets that all other open subsets are made
of; this will lead us to the notion of a basis for a topology, and we’ll see that
in a week or two.
Remark 8.3.1.5. Suppose that (X, d

X

) is a metric space; then we know
that a subset A µ X inherits a metric space structure. Since (A, d

A

) is a
metric space, one can induce a topology from the metric.

On the other hand, we have just seen that A can inherit a topology from
X (without passing through a metric on A).

It turns out that these two topologies are the same. I’ll leave this as an
exercise to you.

8.3.2 Product topology
Definition 8.3.2.1. Let (X,T

X

) and (Y,T
Y

) be topological spaces. Let us
define

T

to be the collection of subsets of X ◊ Y that can be expressed as unions of
sets of the form U ◊ V , where U œ T

X

and V œ T
Y

.
We call this the product topology on X ◊ Y .
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Exercise 8.3.2.2. Show that T is a topology on X ◊ Y .
Proof. 1. The empty set can be written as ÿ ◊ ÿ, so the empty set is in T.

Like wise, X ◊ Y is in T because X and Y are open sets of X and Y ,
respectively.

2. We first note that if U, U

Õ and V, V

Õ are open subsets of X and Y ,
respectively, then

(U ◊ V ) fl (U Õ ◊ V

Õ) = (U fl U

Õ) ◊ (V fl V

Õ).

To see this, note that (x, y) is in the intersection if and only if x œ U flU

Õ

and y œ V fl V

Õ.
So suppose that W œ T, so

W =
€

–œA

U

–

◊ V

–

is some union of products of open subsets of X and Y . Fix another
open subset

W

Õ =
€

—œB

U

—

◊ V

—

.

Then3

W fl W

Õ =
€

–œA,—œB

(U
–

◊ V

–

) fl (U
—

◊ V

—

) =
€

–œA,—œB

(U
–

fl U

—

) ◊ (V
–

fl V

—

)

is a union of products of open sets.

3. If {W

–

}
–œA is some collection of open sets, each W

–

can be expressed
as a union

W

–

=
€

“œC
–

U

“

◊ V

“

.

Hence €

–œA

W

–

=
€

–œA,“œC
–

U

“

◊ V

“

is a union of products of open sets as well. This shows t
–

W

–

œ T.

3This is a careful application of facts about sets. Note that for something to be in
the intersection of W and W

Õ, it must be contained in some U

–

◊ V

–

and some U

—

◊ V

—

.
Likewise, if an element in the intersection of some U

–

◊ V

–

and some U

—

◊ V

—

, it is in
W fl W

Õ. In other words, if I take the intersection of U

–

◊ V

–

with U

—

◊ V

—

for every –, —,
and consider the union of these intersections, I recover W fl W

Õ.


