
Lecture 9

Tuesday, September 24th

9.1 Intro to quotient spaces
In homework, you showed the following:

Fix a topological space (X,T
X

) and a surjection p : X æ Y . Then
you can give Y a topology. Moreover, this topology satisfies the following
property:

If (Z,T
Z

) is another topological space, then a function f : Y æ Z is
continuous if and only if the composition p ¶ f : X æ Z is continuous.

Remark 9.1.0.1. The power of this statement is that you can check the
continuity of f by checking something between X and Z, not between Y and
Z. If you have more information about X then about (Y,T

Y

), this is a very
useful technique.

But where do surjections X æ Y come from? There is a natural source:
When Y is a quotient of X. Today’s goal is to explain this.

In the last couple classes, we’ve tried to consider the two following sets:

1. The set of all lines through the origin (in R2), and

2. The cylinder-like gadget one gets by gluing two edges of a sheet of
paper together.

I claim that we can realize both sets as the Y in the quotient space
construction, and thereby endow these sets with topologies.
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Example 9.1.0.2. In the example of the cylinder-like gadget, the sheet of
paper surjects onto the cylinder like object. So the sheet of paper is the X

and the cylinder-like gadget is the Y .
It is not at obvious what X one can take to surject onto the set of lines

in R2 through the origin.

9.2 Equivalence relations and quotient sets
I want to tell you how to take a set X and “glue” some of its elements
together.

Remark 9.2.0.1. This is imprecise, but is meant to give intuition. In what
follows, the following expressions will roughly mean the same thing:

1. To “glue” two points of X together.

2. To make two points of X equal.

3. Identifying two points of X.

The mathematical toolkit we have for identifying points of X is called an
equivalence relation.

Definition 9.2.0.2. Let X be a set. An equivalence relation on X is a choice
of subset

E µ X ◊ X

satisfying the following:

(0) (Reflexivity.) For every x œ X, the element (x, x) must be in E.

(1) (Symmetry.) For every x, x

Õ œ X, if (x, x

Õ) œ E, then (xÕ
, x) is in E.

(2) (Transitivity.) For every x, x

Õ
, x

ÕÕ œ X, if (x, x

Õ) œ E and (xÕ
, x

ÕÕ) œ E,
then (x, x

ÕÕ) œ E.

Notation 9.2.0.3. Let E µ X ◊ X be an equivalence relation on X. Then
we will write

x ≥ x

Õ

and say “x is related to x

Õ” whenever (x, x

Õ) œ E.
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Example 9.2.0.4. In the ≥ notation, the above three properties of an equiv-
alence relation may be written as

(0) (Reflexivity.) For every x œ X, x ≥ x.

(1) (Symmetry.) For every x, x

Õ œ X, x ≥ x

Õ =∆ x

Õ ≥ x.

(2) (Transitivity.) For every x, x

Õ
, x

ÕÕ œ X, x ≥ x

Õ and x

Õ ≥ x

ÕÕ implies
x ≥ x

ÕÕ.

Example 9.2.0.5. The prototypical example of an equivalence relation is
the equality relation. That is,

x ≥ x

Õ ≈∆ x = x

Õ
.

In this example, E is equal to the set of all pairs (x, x). (That is, those (x, x

Õ)
such that x = x

Õ.) In terms of the intuition that an equivalence relation tells
you which elements to identify, this relation tells you to introduce no new
identifications—i.e., you only glue a point to itself, so you are not gluing any
non-distinct points together.

Example 9.2.0.6. Another example of an equivalence relation is to glue
everything together—i.e., to glue any two points to each other. That is,

x ≥ x

Õ for any x, x

Õ œ X.

That is, E is equal to X ◊ X itself.

Now let us give a name for the set of all points that are identified to each
other.

Definition 9.2.0.7. Fix a set X and an equivalence relation E µ X ◊ X.
An equivalence class of E is a subset A µ X satisfying the following:

(0) A is non-empty.

(1) If x œ A and x ≥ x

Õ, then x

Õ œ A.

(2) If x, x

Õ œ A, then x ≥ x

Õ.

Exercise 9.2.0.8. Fix an equivalence relation E on X and let A

1

, A

2

µ X

be two equivalence classes. Show that if there exists an element x œ A

1

fl A

2

,
then A

1

= A

2

.
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Proof. Let [x] be the collection of those x

Õ œ X such that x ≥ x

Õ. I first claim
that if any equivalence class A contains x, then A = [x].

A µ [x] follows from property (2) of an equivalence class (Definition 9.2.0.7).
[x] µ A follows from property (1) of an equivalence class.
Thus A

1

= [x] = A

2

and we are finished.

What the above exercise tells us is that any equivalence relation on X

partitions X. That is, it allows us to write X as a union of subsets called
equivalence classes:

X =
€

A

Moreover, if A ”= A

Õ, then A fl A

Õ = ÿ. Thus X is a union of subsets that are
disjoint from one another.

Definition 9.2.0.9. Let X be a set and E µ X ◊ X an equivalence relation
on X. Then we let

X/ ≥
and

X/E

denote the set of equivalence classes of E. That is,

X/E = {A µ X such that A is an equivalence class.}

We call X/E the quotient set of X (with respect to E).

Remark 9.2.0.10. So for example, the following notations make sense:

A œ X/E, A µ X, x œ A.

However, the following does not make sense:

A µ X/E, x œ X/E.

Note that we have a function

q : X æ X/E, x ‘æ The equivalence class A containing x.

We know that every x œ X belongs to some equivalence class because of
property (0) of an equivalence relation, and we know that every x belongs
to a unique equivalence class because of the exercise—hence the function q

is indeed well-defined.
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Definition 9.2.0.11. The function q : X æ X/E is called the quotient map

(with respect to E).

Remark 9.2.0.12. Intuitively, the data of E tells you which points to glue
together. X/E is the set one gets after gluing together those points. The
quotient map q tells you that a point x œ X goes to the point in X/E

resulting from gluing together all those points related to x.

Remark 9.2.0.13. The function q is a surjection. This is by property (0) of
equivalence class: Any equivalence class has at least one element in it, hence
any A equals q(x) for some x.

9.2.1 The collection of lines through the origin in R2

We tackled this set a week ago. Let’s give this set a name.

Notation 9.2.1.1 (RP

1). We let RP

1 denote the set of all lines through the
origin in R2.

Remark 9.2.1.2. This notation is common in the literature. RP

1 is also
called the real projective line.

Our goal is to understand whether we can think of RP

1 as a topological
space.

How do you specify a line through the origin in R2?
Approach One. Specify a point on the circle. Then there’s a unique

line that goes through that point and the origin. So there is a function

p : S

1 æ RP

1

.

Note that this function is not one-to-one; for example, two antipodal points
on a circle (i.e., two points given by angle ◊ and by ◊fi) determine the same
line. Regardless, p is a surjection, so we can try to endow RP

1 with the
topology you induced on homework.

Approach two. Specifying an equation for the line. Recall that any line
can be expressed as the set of pairs x

1

, x

2

satisfying the equation

ax

1

+ bx

2

= c.

If the line is to pass through the origin, then we know c must equal zero.
Moreover, for the above equation to specify a line, then at least one of a or b
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must be non-zero. So any pair (a, b) ”= (0, 0) determines a line L

a,b

through
the origin:

(a, b) ‘æ L

a,b

= {(x
1

, x

2

) such that ax

1

+ bx

2

= 0.

This defines another function

p : R2 \ {0} æ RP

1

, (a, b) ‘æ L

a,b

.

This is a surjection because every line through the origin is determined by
some equation of the form ax

1

+ bx

2

= 0. However, this function is not an
injection.

Exercise 9.2.1.3. Fix a pair (a, b) and (aÕ
, b

Õ). Then L

a,b

= L

a

Õ
,b

Õ if and only
if there exists a non-zero real number t ”= 0 such that

(ta, tb) = (aÕ
, b

Õ).

So we have laid out two approaches. In either approach, we have found a
set X together with a surjection p : X æ RP

1. Moreover, intuitively, both
these surjections should feel continuous. (Informally: If you wiggle a point
in S

1, you are wiggling the line passing through that point. If you wiggle the
parameters a and b, you are wiggling the line given by that parameter.) So
a natural way to give a topology to RP

1 is by giving it the quotient topology

induced by the surjections p (as defined in your homework).

9.3 When are two spaces equivalent?
So we have two distinct ways of exhibiting a surjection to RP

1:

1. As a quotient of the sspace {(a, b) such that (a, b) ”= (0, 0) = R2 \
{(0, 0)}, and

2. As a quotient of S

1.

So, a priori, we have two di�erent topologies on RP

1. Are they the same?
Put another way, are the quotient topologies on

(R2 \ {(0, 0)}/ ≥) and S

1

/ ≥
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“equivalent” in some sense?
This brings us to a natural question:
When should we consider two topological spaces to be equiva-

lent?
I want to emphasize a di�erence between two things being “equal” (or

the same) and two things being “equivalent.” For example, a set of three
bananas is not the same set as a set of three apples. But they can be treated
as equivalent for many set-theoretic purposes. The reason is that they have
the same “size,” or cardinality; that is, the two sets are in bijection.

Put another way, we consider two sets to be equivalent if there exists a
bijection between them. And the bijection exhibits in what way we consider
them to be equivalent.

So how about spaces? Spaces are not just sets, but sets equipped with a
topology (i.e., a collection open sets). So we should consider two spaces to be
equivalent if they are not only equivalent as sets, but also have “equivalent”
collections of open sets. More on this next time.


