Lecture 12

Real projective plane

12.1 RP! and RP?

Recall that RP! is the set of lines through the origin in R%. And RP? is the
set of lines through the origin in R®. These spaces are pronounced “R P one”
and “R P two,” respectively.

Remark 12.1.0.1. Somebody asked what this notation stands for.

R stands for the real numbers.

P stands for the word “projective.” This word originates in “projective
geometry,” which is the study of how the geometry of our world behaves
when it’s projected onto (for example) a canvas, or our retina.

Sometimes, RP! is called the real projective line, and RP? is called the
real projective space.

Remark 12.1.0.2. Somebody asked if there is a “complex” version, say CP*
and CP2. There are such things. Recall that we have seen that RP! can be
written as the following quotient set:

{(x1,22) #(0,0)}/ ~, (w1, ma) ~ (2], 2)) <= w1 =tz and x5 = tay for some ¢ # 0.

Well, we can now pretend that z,, xs are complex number, and define a quo-
tient set using the exact same notation as above (with ¢ now also a complex
number). This is a quotient of the space C x C\ {(0,0)}. Since C = R?, this
is a quotient of the space R*\ {(0,0,0,0)}. We call this quotient CP".

It turns out that CP! is homeomorphic to the sphere, S2.
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12.2 The topology of RP?

Today we're going to study RP2. It’s a great space.
Recall that we have defined a function

p:S? — RP?

from the sphere to RP2. It sends a point x € S? to the unique line L passing
through x and the origin.

p is a surjection because every line through the origin passes through
some point on the sphere.

p is not an injection. Indeed, every line through the origin passes through
two points on the sphere. Thus p is a two-to-one map, meaning that every
point in the codomain has a preimage of size two.

Remark 12.2.0.1. Fix a line L € RP?. Note that if x is a point in L N S?,
then the point —z, defined by

T = (21,%2,23) = —x = (—x1, T2, —T3)

is the other point in L N S% So we see that p~!(L) = {z, —x}.
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Definition 12.2.0.2 (Quotient topology, I. This is from homework.). Let
X be a topological space. If p: X — Y is a surjection, we topologize Y as
follows: A subset V' C Y is open if and only if p~'(V) is open in X.

On the other hand, we have:

Definition 12.2.0.3 (Quotient topology, I1.). Let X be a topological space
and ~ an equivalence relation on X. Let ¢ : X — X/ ~ be the quotient
map—i.e., ¢(z) = [z]. We topologize X/ ~ so that V' C X/ ~ is open if and
only if ¢~1(V) is open.

Remark 12.2.0.4. Note that the second definition is a special case of the
first, because ¢ : X — X/ ~ is always a surjection.

Now we put the two definitions together. Let p: X — Y be a surjection.
Recall from last week that p defines an equivalence relation ~ on X given by
x~ 1z <= p(r)=p(z'), and that we have a commutative diagram

XXP%Y

X/~

Here, ¢ is a function given by ¢([z]) = p(z). That the diagram is commu-
tative means that p = ¢ o q. Moreover, we also saw last week that ¢ is a
bijection.

If we give X/ ~ the quotient topology (II), then there is a unique topology
on Y so that ¢ is not only a bijection, but a homeomorphism. This is the
topology for which V' C Y is open if and only if ¢~1(V) is open in X/ ~.

Definition 12.2.0.5 (Quotient topology, IIL.). Let p : X — Y be a surjec-
tion, and let ~ be the equivalence relation z ~ 2/ <= p(z) = p(z’). Then
we topologize Y so that V' C Y is open if and only if ¢~!(V') is open in X/ ~.

We leave the following for you to verify:

Proposition 12.2.0.6. The definitions I and III yield the same topology on
Y.

Definition 12.2.0.7. Let X be a topological space and let p: X — Y be a
surjection. The topology of Definition I (or III) is called the quotient topology
onY.
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Definition 12.2.0.8. Consider the surjection p : S — RP? discussed above.
We topologize RP? using the quotient topology.

Remark 12.2.0.9. So we are using two of our “how to make a new space”
constructions to define RP?. First, note that we have topologized S? by the
subspace topology—R? has a standard topology, and we give S? the subspace
topology. Second, we have used the quotient space construction.

12.3 An open subset

I would like to better understand RP?. So we're going to try to start un-
derstanding subsets of RP? in terms of spaces I understand. Well, the only
space that is remotely familiar to me is R%. So can I construct functions from
RP? to R?, and perhaps vice versa, that will help me understand RP??

Here is a fun construction. Let L € RP? be a line through the origin.
And fix a plane P; given by the equation x3 = 1. Concretely,

Py = {(x1, 7y, x3) such that x5 = 1} C R®.

Then, if L intersects P3, we have a unique intersection point y € L N Ps. If
we call its coordinates vy, ys,y3, we know y3 = 1, so we may as well only
remember the pair (yi,y2). This yields an assignment

L (ylayQ)-



12.4. PROVING U;s IS OPEN )

That is, it seems we almost have a function from RP? to R2.

I say almost because not every line L € RP? intersections Ps. Indeed,
what if L is the line given by the x; or the x5 axis? In general, if L is parallel
to the plane P3, then L never intersects P3, and we have no way of producing
the numbers (y1, y2).

So this geometric construction doesn’t produce a function from RP? to
R2, but it does produce a function from a subset of RP? to R?. Let’s give
this subset a name.

Notation 12.3.0.1. Let U; C RP? the set of those lines that intersect Ps.
Then the above construction defines a function
jg . U3 — R2, L — (yl,yg)

where (y1, Y9, 1) is the unique point in L N Ps.
Here is the big question of the day: Is U3 open?

12.4 Proving U; is open

This is a great exercise in all the definitions.
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12.4.1 Using the definition of quotient topology to re-
duce the problem to a subset of S?

By definition, Us C RP? is open if and only if its preimage in S? is open (its
preimage under the map p : S? — RP?).
Remember that p is the map sending a point x to the line passing through
x and the origin. As such, the preimage of Us is the set of those € S? such
that the line through x and the origin also passes through the plane Ps.
But given z, the line through x and the origin intersects P; if and only if
the coordinate x5 of x is non-zero. Thus, we find

p 1 (Us) = {x = (v1, 29, 23) € S? such that x3 # 0}.

Let us call this set V5.
Thus, to see whether Us is open, we must test whether V3 is an open
subset of S2.

12.4.2 Using the definition of subset topology to re-
duce the problem to a subset of R?

Recall that S? is given the subspace topology as a subspace of R®. By defini-
tion, a subset V' C S? is open if and only if there exists an open W C RR?
for which

V=WnSs>

Just as an e-0 proof requires you to produce a § given an €, we must now
exhibit a W given a V' to prove that V is open.

Our V in question is the set V5 C S? be the set of those z € S? whose x5
coordinate is non-zero. I claim V3 is open.

So what is the open set W C R3?

Proposition 12.4.2.1. Let W C RR? denote the set of all elements z € R3
for which x3 # 0. Then :

(1) W is open in R3.

(2) WNS?2=1s.

Proof. We will omit the proof of (2). If (2) is not clear to you, just carefully
think about the definitions.
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To prove (1), it suffices to prove that any x € W is contained in some
open ball B(x,r) such that B(z,r) C W.!

Well, given x € W, we know that x has distance r = |x3| from the plane
{z3 = 0}. (This is otherwise known as the z1-z5 plane.) Thus any element
7’ € R3 of distance less than r is also contained in W. We conclude that
B(z,|z3|) C W, so W is open. O

Using the proposition, we conclude that V3 C S? is an open subset. Be-
cause V3 = p~(Us), we further conclude that Uz C RP? is an open subset.

12.5 Another open subset

So we have produced an open subset Us; C RP?, and a function
j3 : U3 — R2

which sends a line L intersecting the plane P; = {x3 = 1} to the the first
two coordinates of the intersection point L N Ps.

Note that we did not need to choose the x3 coordinate. For example,
if we had chosen the x5 coordinate, we could intersect lines with the plane
Py = {z9 = 1}. As before, we see that note every L € RP? intersects P»; so
let Uy C RP? be the set of those lines that intersect Ps.

We then have a function

jgle—)RQ

given by sending a line L to the pair (y1, y3) where (y1, 1, y3) is the intersection
point of L with P,. As before, we see that U, is an open subset of RP?.

12.6 A cover

Question: Do U, and Us cover RP?? That is,
Does U; U Uz equal RP??

Parsing the definitions, we see that the union Us; U Us consists of those lines
L which pass through at least one of P, or Ps.

"'We saw in a previous class that a subset W of a metric space is open if and only if for
every x € W, there is some open ball of positive radius containing x and contained in W.
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Figure 12.1: Open subsets V3 (in blue) and V5 (in green) of S

Then the answer to the question is no. For example, if Uy U Uz were to
equal RP?, then their preimages Vo = p~(Us) and V3 = p~!(Us) would have
the property that Vo U V3 = S2, because p is a surjection. But indeed, Vo U V3
is missing exactly two points of the sphere: (£1,0,0).

To see this directly from the “set of lines” definitions, note that there
is a line, called the x;-axis, which does not pass through the plane P, nor
the plane Pj3. Indeed, this is the only line that does not pass through either
of the planes. (Any other line would have a point with either the x5 or z3
coordinate being non-zero; in particular, such a line would intersect the plane
Py (if zo #0) or Ps (if x3 # 0).)

That is, Uy U Us is equal to RP? with one point removed.

But I want all of RP2.

Well, there is a notationally suggestive thing we can do: Let’s define
U; C RP? to consist of those lines that pass through the plane P, = {x; = 1}.
(This P, is the plane consisting of those vectors whose x; coordinate is equal
to 1.) As before, we see that U; is open. It also clearly contains the z;-axis.
To summarize, we have:

Proposition 12.6.0.1. For : = 0,1, or 2, let
P, CR®

denote the set of those points whose z;th coordinate is equal to 1. We let
U, C RP?

consist of those lines L such that L N P; is non-empty. Then



12.6. A COVER

1. each U; is an open subset of RP2. Moreover,

2. The union
U, uUyUUs

is equal to RP2.

We will study these open sets more next time.



