Lecture 12

Real projective plane

12.1 $\mathbb{R} P^{1}$ and $\mathbb{R} P^{2}$

Recall that $\mathbb{R} P^{1}$ is the set of lines through the origin in \mathbb{R}^{2}. And $\mathbb{R} P^{2}$ is the set of lines through the origin in \mathbb{R}^{3}. These spaces are pronounced " R P one" and "R P two," respectively.

Remark 12.1.0.1. Somebody asked what this notation stands for.
\mathbb{R} stands for the real numbers.
P stands for the word "projective." This word originates in "projective geometry," which is the study of how the geometry of our world behaves when it's projected onto (for example) a canvas, or our retina.

Sometimes, $\mathbb{R} P^{1}$ is called the real projective line, and $\mathbb{R} P^{2}$ is called the real projective space.

Remark 12.1.0.2. Somebody asked if there is a "complex" version, say $\mathbb{C} P^{1}$ and $\mathbb{C} P^{2}$. There are such things. Recall that we have seen that $\mathbb{R} P^{1}$ can be written as the following quotient set:
$\left\{\left(x_{1}, x_{2}\right) \neq(0,0)\right\} / \sim, \quad\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \Longleftrightarrow x_{1}=t x_{1}^{\prime}$ and $x_{2}=t x_{2}^{\prime}$ for some $t \neq 0$.
Well, we can now pretend that x_{1}, x_{2} are complex number, and define a quotient set using the exact same notation as above (with t now also a complex number). This is a quotient of the space $\mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$. Since $\mathbb{C} \cong \mathbb{R}^{2}$, this is a quotient of the space $\mathbb{R}^{4} \backslash\{(0,0,0,0)\}$. We call this quotient $\mathbb{C} P^{1}$.

It turns out that $\mathbb{C} P^{1}$ is homeomorphic to the sphere, S^{2}.

12.2 The topology of $\mathbb{R} P^{2}$

Today we're going to study $\mathbb{R} P^{2}$. It's a great space.
Recall that we have defined a function

$$
p: S^{2} \rightarrow \mathbb{R} P^{2}
$$

from the sphere to $\mathbb{R} P^{2}$. It sends a point $x \in S^{2}$ to the unique line L passing through x and the origin.

p is a surjection because every line through the origin passes through some point on the sphere.
p is not an injection. Indeed, every line through the origin passes through two points on the sphere. Thus p is a two-to-one map, meaning that every point in the codomain has a preimage of size two.

Remark 12.2.0.1. Fix a line $L \in \mathbb{R} P^{2}$. Note that if x is a point in $L \cap S^{2}$, then the point $-x$, defined by

$$
x=\left(x_{1}, x_{2}, x_{3}\right) \Longrightarrow-x=\left(-x_{1},-x_{2},-x_{3}\right)
$$

is the other point in $L \cap S^{2}$. So we see that $p^{-1}(L)=\{x,-x\}$.

Definition 12.2.0.2 (Quotient topology, I. This is from homework.). Let X be a topological space. If $p: X \rightarrow Y$ is a surjection, we topologize Y as follows: A subset $V \subset Y$ is open if and only if $p^{-1}(V)$ is open in X.

On the other hand, we have:
Definition 12.2.0.3 (Quotient topology, II.). Let X be a topological space and \sim an equivalence relation on X. Let $q: X \rightarrow X / \sim$ be the quotient map-i.e., $q(x)=[x]$. We topologize X / \sim so that $V \subset X / \sim$ is open if and only if $q^{-1}(V)$ is open.

Remark 12.2.0.4. Note that the second definition is a special case of the first, because $q: X \rightarrow X / \sim$ is always a surjection.

Now we put the two definitions together. Let $p: X \rightarrow Y$ be a surjection. Recall from last week that p defines an equivalence relation \sim on X given by $x \sim x^{\prime} \Longleftrightarrow p(x)=p\left(x^{\prime}\right)$, and that we have a commutative diagram

Here, ϕ is a function given by $\phi([x])=p(x)$. That the diagram is commutative means that $p=\phi \circ q$. Moreover, we also saw last week that ϕ is a bijection.

If we give X / \sim the quotient topology (II), then there is a unique topology on Y so that ϕ is not only a bijection, but a homeomorphism. This is the topology for which $V \subset Y$ is open if and only if $\phi^{-1}(V)$ is open in X / \sim.
Definition 12.2.0.5 (Quotient topology, III.). Let $p: X \rightarrow Y$ be a surjection, and let \sim be the equivalence relation $x \sim x^{\prime} \Longleftrightarrow p(x)=p\left(x^{\prime}\right)$. Then we topologize Y so that $V \subset Y$ is open if and only if $\phi^{-1}(V)$ is open in X / \sim.

We leave the following for you to verify:
Proposition 12.2.0.6. The definitions I and III yield the same topology on Y.

Definition 12.2.0.7. Let X be a topological space and let $p: X \rightarrow Y$ be a surjection. The topology of Definition I (or III) is called the quotient topology on Y.

Definition 12.2.0.8. Consider the surjection $p: S^{2} \rightarrow \mathbb{R} P^{2}$ discussed above. We topologize $\mathbb{R} P^{2}$ using the quotient topology.

Remark 12.2.0.9. So we are using two of our "how to make a new space" constructions to define $\mathbb{R} P^{2}$. First, note that we have topologized S^{2} by the subspace topology- \mathbb{R}^{3} has a standard topology, and we give S^{2} the subspace topology. Second, we have used the quotient space construction.

12.3 An open subset

I would like to better understand $\mathbb{R} P^{2}$. So we're going to try to start understanding subsets of $\mathbb{R} P^{2}$ in terms of spaces I understand. Well, the only space that is remotely familiar to me is \mathbb{R}^{2}. So can I construct functions from $\mathbb{R} P^{2}$ to \mathbb{R}^{2}, and perhaps vice versa, that will help me understand $\mathbb{R} P^{2}$?

Here is a fun construction. Let $L \in \mathbb{R} P^{2}$ be a line through the origin. And fix a plane P_{3} given by the equation $x_{3}=1$. Concretely,

$$
P_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \text { such that } x_{3}=1\right\} \subset \mathbb{R}^{3} .
$$

Then, if L intersects P_{3}, we have a unique intersection point $y \in L \cap P_{3}$. If we call its coordinates y_{1}, y_{2}, y_{3}, we know $y_{3}=1$, so we may as well only remember the pair (y_{1}, y_{2}). This yields an assignment

$$
L \mapsto\left(y_{1}, y_{2}\right) .
$$

That is, it seems we almost have a function from $\mathbb{R} P^{2}$ to \mathbb{R}^{2}.
I say almost because not every line $L \in \mathbb{R} P^{2}$ intersections P_{3}. Indeed, what if L is the line given by the x_{1} or the x_{2} axis? In general, if L is parallel to the plane P_{3}, then L never intersects P_{3}, and we have no way of producing the numbers $\left(y_{1}, y_{2}\right)$.

So this geometric construction doesn't produce a function from $\mathbb{R} P^{2}$ to \mathbb{R}^{2}, but it does produce a function from a subset of $\mathbb{R} P^{2}$ to \mathbb{R}^{2}. Let's give this subset a name.

Notation 12.3.0.1. Let $U_{3} \subset \mathbb{R} P^{2}$ the set of those lines that intersect P_{3}.
Then the above construction defines a function

$$
j_{3}: U_{3} \rightarrow \mathbb{R}^{2}, \quad L \mapsto\left(y_{1}, y_{2}\right)
$$

where $\left(y_{1}, y_{2}, 1\right)$ is the unique point in $L \cap P_{3}$.
Here is the big question of the day: Is U_{3} open?

12.4 Proving U_{3} is open

This is a great exercise in all the definitions.

12.4.1 Using the definition of quotient topology to reduce the problem to a subset of S^{2}

By definition, $U_{3} \subset \mathbb{R} P^{2}$ is open if and only if its preimage in S^{2} is open (its preimage under the map $p: S^{2} \rightarrow \mathbb{R} P^{2}$).

Remember that p is the map sending a point x to the line passing through x and the origin. As such, the preimage of U_{3} is the set of those $x \in S^{2}$ such that the line through x and the origin also passes through the plane P_{3}.

But given x, the line through x and the origin intersects P_{3} if and only if the coordinate x_{3} of x is non-zero. Thus, we find

$$
p^{-1}\left(U_{3}\right)=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \text { such that } x_{3} \neq 0\right\} .
$$

Let us call this set V_{3}.
Thus, to see whether U_{3} is open, we must test whether V_{3} is an open subset of S^{2}.

12.4.2 Using the definition of subset topology to reduce the problem to a subset of \mathbb{R}^{3}

Recall that S^{2} is given the subspace topology as a subspace of \mathbb{R}^{3}. By definition, a subset $V \subset S^{2}$ is open if and only if there exists an open $W \subset R R^{3}$ for which

$$
V=W \cap S^{2}
$$

Just as an $\epsilon-\delta$ proof requires you to produce a δ given an ϵ, we must now exhibit a W given a V to prove that V is open.

Our V in question is the set $V_{3} \subset S^{2}$ be the set of those $x \in S^{2}$ whose x_{3} coordinate is non-zero. I claim V_{3} is open.

So what is the open set $W \subset \mathbb{R}^{3}$?
Proposition 12.4.2.1. Let $W \subset R R^{3}$ denote the set of all elements $x \in \mathbb{R}^{3}$ for which $x_{3} \neq 0$. Then :
(1) W is open in \mathbb{R}^{3}.
(2) $W \cap S^{2}=V_{3}$.

Proof. We will omit the proof of (2). If (2) is not clear to you, just carefully think about the definitions.

To prove (1), it suffices to prove that any $x \in W$ is contained in some open ball $B(x, r)$ such that $B(x, r) \subset W .{ }^{1}$

Well, given $x \in W$, we know that x has distance $r=\left|x_{3}\right|$ from the plane $\left\{x_{3}=0\right\}$. (This is otherwise known as the $x_{1}-x_{2}$ plane.) Thus any element $x^{\prime} \in \mathbb{R}^{3}$ of distance less than r is also contained in W. We conclude that $B\left(x,\left|x_{3}\right|\right) \subset W$, so W is open.

Using the proposition, we conclude that $V_{3} \subset S^{2}$ is an open subset. Because $V_{3}=p^{-1}\left(U_{3}\right)$, we further conclude that $U_{3} \subset \mathbb{R} P^{2}$ is an open subset.

12.5 Another open subset

So we have produced an open subset $U_{3} \subset \mathbb{R} P^{2}$, and a function

$$
j_{3}: U_{3} \rightarrow \mathbb{R}^{2}
$$

which sends a line L intersecting the plane $P_{3}=\left\{x_{3}=1\right\}$ to the the first two coordinates of the intersection point $L \cap P_{3}$.

Note that we did not need to choose the x_{3} coordinate. For example, if we had chosen the x_{2} coordinate, we could intersect lines with the plane $P_{2}=\left\{x_{2}=1\right\}$. As before, we see that note every $L \in \mathbb{R} P^{2}$ intersects P_{2}; so let $U_{2} \subset \mathbb{R} P^{2}$ be the set of those lines that intersect P_{2}.

We then have a function

$$
j_{2}: U_{2} \rightarrow \mathbb{R}^{2}
$$

given by sending a line L to the pair $\left(y_{1}, y_{3}\right)$ where $\left(y_{1}, 1, y_{3}\right)$ is the intersection point of L with P_{2}. As before, we see that U_{2} is an open subset of $\mathbb{R} P^{2}$.

12.6 A cover

Question: Do U_{2} and U_{3} cover $\mathbb{R} P^{2}$? That is,

$$
\text { Does } U_{2} \cup U_{3} \text { equal } \mathbb{R} P^{2} \text { ? }
$$

Parsing the definitions, we see that the union $U_{2} \cup U_{3}$ consists of those lines L which pass through at least one of P_{2} or P_{3}.

[^0]

Figure 12.1: Open subsets V_{3} (in blue) and V_{2} (in green) of S^{2}.

Then the answer to the question is no. For example, if $U_{2} \cup U_{3}$ were to equal $\mathbb{R} P^{2}$, then their preimages $V_{2}=p^{-1}\left(U_{2}\right)$ and $V_{3}=p^{-1}\left(U_{3}\right)$ would have the property that $V_{2} \cup V_{3}=S^{2}$, because p is a surjection. But indeed, $V_{2} \cup V_{3}$ is missing exactly two points of the sphere: $(\pm 1,0,0)$.

To see this directly from the "set of lines" definitions, note that there is a line, called the x_{1}-axis, which does not pass through the plane P_{2}, nor the plane P_{3}. Indeed, this is the only line that does not pass through either of the planes. (Any other line would have a point with either the x_{2} or x_{3} coordinate being non-zero; in particular, such a line would intersect the plane $P_{2}\left(\right.$ if $\left.x_{2} \neq 0\right)$ or $P_{3}\left(\right.$ if $\left.x_{3} \neq 0\right)$.)

That is, $U_{2} \cup U_{3}$ is equal to $\mathbb{R} P^{2}$ with one point removed.
But I want all of $\mathbb{R} P^{2}$.
Well, there is a notationally suggestive thing we can do: Let's define $U_{1} \subset \mathbb{R} P^{2}$ to consist of those lines that pass through the plane $P_{1}=\left\{x_{1}=1\right\}$. (This P_{1} is the plane consisting of those vectors whose x_{1} coordinate is equal to 1.) As before, we see that U_{1} is open. It also clearly contains the x_{1}-axis. To summarize, we have:

Proposition 12.6.0.1. For $i=0,1$, or 2 , let

$$
P_{i} \subset \mathbb{R}^{3}
$$

denote the set of those points whose x_{i} th coordinate is equal to 1 . We let

$$
U_{i} \subset \mathbb{R} P^{2}
$$

consist of those lines L such that $L \cap P_{i}$ is non-empty. Then

1. each U_{i} is an open subset of $\mathbb{R} P^{2}$. Moreover,
2. The union

$$
U_{1} \cup U_{2} \cup U_{3}
$$

is equal to $\mathbb{R} P^{2}$.
We will study these open sets more next time.

[^0]: ${ }^{1}$ We saw in a previous class that a subset W of a metric space is open if and only if for every $x \in W$, there is some open ball of positive radius containing x and contained in W.

