
Lecture 12

Real projective plane

12.1 RP

1 and RP

2

Recall that RP

1 is the set of lines through the origin in R2. And RP

2 is the
set of lines through the origin in R3. These spaces are pronounced “R P one”
and “R P two,” respectively.

Remark 12.1.0.1. Somebody asked what this notation stands for.
R stands for the real numbers.
P stands for the word “projective.” This word originates in “projective

geometry,” which is the study of how the geometry of our world behaves
when it’s projected onto (for example) a canvas, or our retina.

Sometimes, RP

1 is called the real projective line, and RP

2 is called the
real projective space.

Remark 12.1.0.2. Somebody asked if there is a “complex” version, say CP

1

and CP

2. There are such things. Recall that we have seen that RP

1 can be
written as the following quotient set:

{(x
1

, x

2

) ”= (0, 0)}/ ≥, (x
1

, x

2

) ≥ (xÕ
1

, x

Õ
2

) ≈∆ x

1

= tx

Õ
1

and x

2

= tx

Õ
2

for some t ”= 0.

Well, we can now pretend that x

1

, x

2

are complex number, and define a quo-
tient set using the exact same notation as above (with t now also a complex
number). This is a quotient of the space C◊C \ {(0, 0)}. Since C ≥= R2, this
is a quotient of the space R4 \ {(0, 0, 0, 0)}. We call this quotient CP

1.
It turns out that CP

1 is homeomorphic to the sphere, S

2.

1
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12.2 The topology of RP

2

Today we’re going to study RP

2. It’s a great space.
Recall that we have defined a function

p : S

2 æ RP

2

from the sphere to RP

2. It sends a point x œ S

2 to the unique line L passing
through x and the origin.

p is a surjection because every line through the origin passes through
some point on the sphere.

p is not an injection. Indeed, every line through the origin passes through
two points on the sphere. Thus p is a two-to-one map, meaning that every
point in the codomain has a preimage of size two.

Remark 12.2.0.1. Fix a line L œ RP

2. Note that if x is a point in L fl S

2,
then the point ≠x, defined by

x = (x
1

, x

2

, x

3

) =∆ ≠x = (≠x

1

, ≠x

2

, ≠x

3

)

is the other point in L fl S

2. So we see that p

≠1(L) = {x, ≠x}.
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Definition 12.2.0.2 (Quotient topology, I. This is from homework.). Let
X be a topological space. If p : X æ Y is a surjection, we topologize Y as
follows: A subset V µ Y is open if and only if p

≠1(V ) is open in X.

On the other hand, we have:

Definition 12.2.0.3 (Quotient topology, II.). Let X be a topological space
and ≥ an equivalence relation on X. Let q : X æ X/ ≥ be the quotient
map—i.e., q(x) = [x]. We topologize X/ ≥ so that V µ X/ ≥ is open if and
only if q

≠1(V ) is open.

Remark 12.2.0.4. Note that the second definition is a special case of the
first, because q : X æ X/ ≥ is always a surjection.

Now we put the two definitions together. Let p : X æ Y be a surjection.
Recall from last week that p defines an equivalence relation ≥ on X given by
x ≥ x

Õ ≈∆ p(x) = p(xÕ), and that we have a commutative diagram

X

q

##

p //
Y

X/ ≥ .

„

;;

Here, „ is a function given by „([x]) = p(x). That the diagram is commu-
tative means that p = „ ¶ q. Moreover, we also saw last week that „ is a
bijection.

If we give X/ ≥ the quotient topology (II), then there is a unique topology
on Y so that „ is not only a bijection, but a homeomorphism. This is the
topology for which V µ Y is open if and only if „

≠1(V ) is open in X/ ≥.

Definition 12.2.0.5 (Quotient topology, III.). Let p : X æ Y be a surjec-
tion, and let ≥ be the equivalence relation x ≥ x

Õ ≈∆ p(x) = p(xÕ). Then
we topologize Y so that V µ Y is open if and only if „

≠1(V ) is open in X/ ≥.

We leave the following for you to verify:

Proposition 12.2.0.6. The definitions I and III yield the same topology on
Y .

Definition 12.2.0.7. Let X be a topological space and let p : X æ Y be a
surjection. The topology of Definition I (or III) is called the quotient topology

on Y .
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Definition 12.2.0.8. Consider the surjection p : S

2 æ RP

2 discussed above.
We topologize RP

2 using the quotient topology.

Remark 12.2.0.9. So we are using two of our “how to make a new space”
constructions to define RP

2. First, note that we have topologized S

2 by the
subspace topology—R3 has a standard topology, and we give S

2 the subspace
topology. Second, we have used the quotient space construction.

12.3 An open subset

I would like to better understand RP

2. So we’re going to try to start un-
derstanding subsets of RP

2 in terms of spaces I understand. Well, the only
space that is remotely familiar to me is R2. So can I construct functions from
RP

2 to R2, and perhaps vice versa, that will help me understand RP

2?

Here is a fun construction. Let L œ RP

2 be a line through the origin.
And fix a plane P

3

given by the equation x

3

= 1. Concretely,

P

3

= {(x
1

, x

2

, x

3

) such that x

3

= 1} µ R3

.

Then, if L intersects P

3

, we have a unique intersection point y œ L fl P

3

. If
we call its coordinates y

1

, y

2

, y

3

, we know y

3

= 1, so we may as well only
remember the pair (y

1

, y

2

). This yields an assignment

L ‘æ (y
1

, y

2

).



12.4. PROVING U

3

IS OPEN 5

That is, it seems we almost have a function from RP

2 to R2.
I say almost because not every line L œ RP

2 intersections P

3

. Indeed,
what if L is the line given by the x

1

or the x

2

axis? In general, if L is parallel

to the plane P

3

, then L never intersects P

3

, and we have no way of producing
the numbers (y

1

, y

2

).
So this geometric construction doesn’t produce a function from RP

2 to
R2, but it does produce a function from a subset of RP

2 to R2. Let’s give
this subset a name.
Notation 12.3.0.1. Let U

3

µ RP

2 the set of those lines that intersect P

3

.
Then the above construction defines a function

j

3

: U

3

æ R2

, L ‘æ (y
1

, y

2

)
where (y

1

, y

2

, 1) is the unique point in L fl P

3

.
Here is the big question of the day: Is U

3

open?

12.4 Proving U3 is open
This is a great exercise in all the definitions.
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12.4.1 Using the definition of quotient topology to re-
duce the problem to a subset of S

2

By definition, U

3

µ RP

2 is open if and only if its preimage in S

2 is open (its
preimage under the map p : S

2 æ RP

2).
Remember that p is the map sending a point x to the line passing through

x and the origin. As such, the preimage of U

3

is the set of those x œ S

2 such
that the line through x and the origin also passes through the plane P

3

.
But given x, the line through x and the origin intersects P

3

if and only if
the coordinate x

3

of x is non-zero. Thus, we find

p

≠1(U
3

) = {x = (x
1

, x

2

, x

3

) œ S

2 such that x

3

”= 0}.

Let us call this set V

3

.
Thus, to see whether U

3

is open, we must test whether V

3

is an open
subset of S

2.

12.4.2 Using the definition of subset topology to re-
duce the problem to a subset of R3

Recall that S

2 is given the subspace topology as a subspace of R3. By defini-
tion, a subset V µ S

2 is open if and only if there exists an open W µ RR

3

for which
V = W fl S

2

.

Just as an ‘-” proof requires you to produce a ” given an ‘, we must now
exhibit a W given a V to prove that V is open.

Our V in question is the set V

3

µ S

2 be the set of those x œ S

2 whose x

3

coordinate is non-zero. I claim V

3

is open.
So what is the open set W µ R3?

Proposition 12.4.2.1. Let W µ RR

3 denote the set of all elements x œ R3

for which x

3

”= 0. Then :
(1) W is open in R3.
(2) W fl S

2 = V

3

.

Proof. We will omit the proof of (2). If (2) is not clear to you, just carefully
think about the definitions.
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To prove (1), it su�ces to prove that any x œ W is contained in some
open ball B(x, r) such that B(x, r) µ W .1

Well, given x œ W , we know that x has distance r = |x
3

| from the plane
{x

3

= 0}. (This is otherwise known as the x

1

-x
2

plane.) Thus any element
x

Õ œ R3 of distance less than r is also contained in W . We conclude that
B(x, |x

3

|) µ W , so W is open.

Using the proposition, we conclude that V

3

µ S

2 is an open subset. Be-
cause V

3

= p

≠1(U
3

), we further conclude that U

3

µ RP

2 is an open subset.

12.5 Another open subset
So we have produced an open subset U

3

µ RP

2, and a function

j

3

: U

3

æ R2

which sends a line L intersecting the plane P

3

= {x

3

= 1} to the the first
two coordinates of the intersection point L fl P

3

.
Note that we did not need to choose the x

3

coordinate. For example,
if we had chosen the x

2

coordinate, we could intersect lines with the plane
P

2

= {x

2

= 1}. As before, we see that note every L œ RP

2 intersects P

2

; so
let U

2

µ RP

2 be the set of those lines that intersect P

2

.
We then have a function

j

2

: U

2

æ R2

given by sending a line L to the pair (y
1

, y

3

) where (y
1

, 1, y

3

) is the intersection
point of L with P

2

. As before, we see that U

2

is an open subset of RP

2.

12.6 A cover
Question: Do U

2

and U

3

cover RP

2? That is,

Does U

2

fi U

3

equal RP

2?

Parsing the definitions, we see that the union U

2

fi U

3

consists of those lines
L which pass through at least one of P

2

or P

3

.
1We saw in a previous class that a subset W of a metric space is open if and only if for

every x œ W , there is some open ball of positive radius containing x and contained in W .
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Figure 12.1: Open subsets V

3

(in blue) and V

2

(in green) of S

2.

Then the answer to the question is no. For example, if U

2

fi U

3

were to
equal RP

2, then their preimages V

2

= p

≠1(U
2

) and V

3

= p

≠1(U
3

) would have
the property that V

2

fiV

3

= S

2, because p is a surjection. But indeed, V

2

fiV

3

is missing exactly two points of the sphere: (±1, 0, 0).
To see this directly from the “set of lines” definitions, note that there

is a line, called the x

1

-axis, which does not pass through the plane P

2

, nor
the plane P

3

. Indeed, this is the only line that does not pass through either
of the planes. (Any other line would have a point with either the x

2

or x

3

coordinate being non-zero; in particular, such a line would intersect the plane
P

2

(if x

2

”= 0) or P

3

(if x

3

”= 0).)
That is, U

2

fi U

3

is equal to RP

2 with one point removed.
But I want all of RP

2.
Well, there is a notationally suggestive thing we can do: Let’s define

U

1

µ RP

2 to consist of those lines that pass through the plane P

1

= {x

1

= 1}.
(This P

1

is the plane consisting of those vectors whose x

1

coordinate is equal
to 1.) As before, we see that U

1

is open. It also clearly contains the x

1

-axis.
To summarize, we have:

Proposition 12.6.0.1. For i = 0, 1, or 2, let

P

i

µ R3

denote the set of those points whose x

i

th coordinate is equal to 1. We let

U

i

µ RP

2

consist of those lines L such that L fl P

i

is non-empty. Then
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1. each U

i

is an open subset of RP

2. Moreover,

2. The union
U

1

fi U

2

fi U

3

is equal to RP

2.

We will study these open sets more next time.


