Lecture 13

Understanding $\mathbb{R} P^{2}$ more

Most of today was spent going over Homework 6. But it's a long problem. Solutions are posted online.

Recall that last time, we defined three open subsets

$$
U_{1}, U_{2}, U_{3}
$$

of $\mathbb{R} P^{2}$.
Here, $U_{i} \subset \mathbb{R} P^{2}$ is the collection of all lines L such that L intersects the plane

$$
P_{i}=\left\{x_{i}=1\right\} .
$$

(This notation is shorthand for the set of all points $x=\left(x_{1}, x_{2}, x_{3}\right)$ for which $x_{i}=1$.)

We saw last time that each $U_{i} \subset \mathbb{R} P^{2}$ is open, and that $U_{1} \cup U_{2} \cup U_{3}=\mathbb{R} P^{2}$.

13.1 Each U_{i} is a copy of \mathbb{R}^{2}

Now, suppose that $L \in U_{3}$. Then L intersects the plane P_{3} (i.e., the plane of points whose 3 rd coordinate is 1). So we can write

$$
L \cap P_{3}=\left\{\left(y_{1}, y_{2}, 1\right)\right\}
$$

where ($y_{1}, y_{2}, 1$) is the unique point in the intersection $L \cap P_{3}$. This defines for us a function

$$
j_{3}: U_{3} \rightarrow \mathbb{R}^{2}, \quad L \mapsto\left(y_{1}, y_{2}\right)
$$

where (y_{1}, y_{2}) are the first two coordinates of the intersection point $L \cap P_{3}$.

It turns out that j_{3} is continuous. Informally, this is because if we have some open ball around (y_{1}, y_{2}), then its preimage will consist of all lines that are close enough to L.

In fact, this is true for any of the U_{i}. More precisely, note that we have a function

$$
j_{1}: U_{1} \rightarrow \mathbb{R}^{2}, \quad L \mapsto\left(y_{2}, y_{3}\right)
$$

where $\left(1, y_{2}, y_{3}\right)$ is the unique intersection point $L \cap P_{1}$. We also have a function

$$
j_{2}: U_{2} \rightarrow \mathbb{R}^{2}, \quad L \mapsto\left(y_{1}, y_{3}\right)
$$

More is true:
Proposition 13.1.0.1. For every $i=1,2,3$ the function

$$
j_{i}: U_{i} \rightarrow \mathbb{R}^{2}
$$

is a homeomorphism.

13.2 Paper mache

Now recall that homeomorphism is our notion of equivalence for topological spaces. So, informally, each time we see a U_{i}, we can replace it with \mathbb{R}^{2}.

On the other hand, we know that $\mathbb{R} P^{2}$ is a union of U_{1}, U_{2} and U_{3}; because each U_{i} is homeomorphic to \mathbb{R}^{2}, this means that $\mathbb{R} P^{2}$ is actually a union of three spaces that are all copies of \mathbb{R}^{2}.

Informally, this means we can make $\mathbb{R} P^{2}$ out of some sort of paper mache - we put together three sheets of paper, but overlapping in some clever way, to make $\mathbb{R} P^{2}$.

