
Lecture 14

Atlases and transition functions
for RP 2

14.1 The earth is a sphere

I asked a question: How do you know that the earth’s surface is (roughly) a
sphere?

We were given many great ideas; one of the most convincing was to go into
outer space and take a bunch of pictures. All others su�ered from being based
on taking local measurements, then assuming that some principle allowed us
to conclude that those local measurements were valid anywhere on earth.
The problem: We can’t know that something about Point A on earth is true
at Point B.

I claimed that the cheapest way to conclude that the earth is (roughly)
a sphere is as follows: Go get an atlas of the earth. Rip out all the pages.
Now glue the pages together along their overlaps. (For example, if Page 10
contains Lagos, and Page 33 does, too, then you should glue Page 10 and
Page 33 together along where Lagos is displayed.) You are making a very
complicated paper mache. And I claim that, in the end, you will end up with
something that is roughly spherical.

(There are some issues: You have to assume that the atlas is correct. And
indeed, to make a statement about something as large as the earth, you do
need to rely on the accuracy of others’ knowledge. Another issue is scaling;
the scale of Page 10 may not equal the scale of Page 13; so you may have to
find an atlas whose pages are made of rubber.)
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If you take each page and remove its boundary edges, each page is home-
omorphic to R2 (e.g., to an open rectangle). And each boundary-removed
page is then an open subset of the surface of the earth (i.e., of the sphere).
What you have just imagined is a procedure of finding a bunch of subsets
of S2 that are all homeomorphic to R2, and then writing S2 as a union of
these subsets. The way the subsets overlap tells you how to put together the
paper mache.

14.2 Paper mache for RP 2

So let’s do this for RP 2.
Recall from the last classes:

1. We define U1 µ RP 2 to be the set of lines that intersect the plane
P1 = {x = (x1, x2, x3) such that x1 = 1}. We have seen that this is an
open subset, and I have told you that it is homeomorphic to R2.

Likewise, we have open subsets U2 and U3 of RP 2. Each of these is also
homeomorphic to RP 2. We have also seen that

U1 fi U2 fi U3 = RP 2.

2. Moreover, the homeomorphisms from the Ui to R2 is given by functions

ji : Ui æ R2.

Let us recall how these were defined. Given a line L œ U1, so that L
intersects the plane P1, we can write the intersection point of L and P1
as follows:

(1, y2, y3).

The function j1 sends L to the pair of numbers (y2, y3).

Likewise,

j2(L) = (y1, y3) when L œ U2, and j3(L) = (y1, y2) when L œ U3.
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14.2.1
Now onto some new material.

Because U1 fi U2 fi U3 = RP 2, we see that the induced map

h : U1
·

U2
·

U3 æ RP 2

is a surjection. (Note that the domain here is the coproduct of U1, U2, and
U3.) In particular, there exists an equivalence relation ≥ on U1

‡
U2

‡
U3

such that we have an induced bijection

(U1
·

U2
·

U3)/ ≥≥= RP 2.

This equivalence relation is one we’ve seen before: We declare

L ≥ LÕ ≈∆ h(L) = h(LÕ).

(In general, when we have a surjection h : X æ Y , we can define a relation
x ≥ xÕ ≈∆ h(x) = h(xÕ) so that we have an induced bijection X/ ≥æ Y .)

Moreover, because each Ui µ RP 2 is open, we have:

Proposition 14.2.1.1. The induced map

(U1
·

U2
·

U3)/ ≥æ RP 2

is a homeomorphism.

Now, because each ji : Ui
≥= R2 is a homeomorphism, we can begin to

understand what RP 2 looks like using coordinates on R2. For example, by
using the three homeomorphisms, we have a single homeomorphism

j : U1
·

U2
·

U3 ≥= R2 ·
R2 ·

R2.

Thus we can try to understand the equivalence relation on the lefthandside
in terms of the righthand side. That is, the homeomorphism j induces an
equivalence relation on the right. What is this relation?

To see what it is, consider the functions

R2

j≠1
1
✏✏

R2

j≠1
2
✏✏

U1
ÿ1 // RP 2 U2.

ÿ2oo
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Then an element y œ R2 on the left is related to an element yÕ œ R2 on the
right if and only if

ÿ1 ¶ j≠1
1 (y) = ÿ2 ¶ j≠1

2 (yÕ).

I claim there is a formula now expressing y in terms of yÕ. To see this, note
that the above equality means that j≠1

1 (y) and j≠1
2 (yÕ) must describe the same

line (i.e., the same element in R2). But j≠1
1 takes the point y = (y2, y3) œ R2

and sends it to the line passing through

(1, y2, y3).

Likewise, j≠1
2 takes the point yÕ = (yÕ

1, yÕ
3) œ R2 and sends it to the line

passing through
(yÕ

1, 1, yÕ
3).

If these points are to be on the same line, then there must be a non-zero real
number t so that

t(1, y2, y3) = (yÕ
1, 1, yÕ

3).

That is,
t = yÕ

1, ty2 = 1, ty3 = yÕ
3.

From this, we quickly conclude that for the points (1, y2, y3) and (yÕ
1, 1, yÕ

3)
to be on the same line L, we must have

y2 = 1/yÕ
1, y3 = yÕ

3/yÕ
1.

Or, equivalently,
yÕ

1 = 1/y2, yÕ
3 = y3/y2.

So this gives part of the relation; we see that y and y’ are related if and only
if the above equations hold. (In particular, y2 must be non-zero for y to be
related to some yÕ, and yÕ

1 must be non-zero for yÕ to be related to some y.)


