
Lecture 16

Closed sets and open covers

Class today will have three parts. As I mentioned last week, we’re starting
a proof bootcamp.

This means every day, you will see new definitions. Then you will spend
most of class trying to prove something using the new definitions.

16.1 Closed sets
Definition 16.1.0.1. Let X be a topological space. A subset A µ X is
called closed if and only if its complement is open.

I want you to prove the following in groups:

Proposition 16.1.0.2. Let (X,T) be a topological space. For this problem,
we let K denote the collection of closed subsets. Show the following are true:

1. ÿ, X œ K.

2. If A1, . . . , An œ K is a finite collection, then t
i=1,...,n Ai is in K.

3. For an arbitrary collection {A–}–œA of elements of K, we have that the
intersection u

–œA A– is also in K.

Proposition 16.1.0.3. Let f : X æ Y be a continuous map of topological
spaces. Show that if A µ Y is closed, then its preimage is closed.

Conversely, suppose that f : X æ Y is a function such that whenever
A µ Y is closed, its preimage is closed. Prove that f is continuous.
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Proposition 16.1.0.4. Let B µ X be an arbitrary subset. Show that there
exists a subset, B µ X, satisfying the following properties:

1. B µ B

2. B is closed.

3. Moreover, if C is any other closed subset of X containing B, then C
contains B.

Informally, this means that B is the “smallest” closed subset of X con-
taining B.

Definition 16.1.0.5 (For future use). B is called the closure of B.

Remark 16.1.0.6 (Motivation for closed sets). Note that the set of closed
sets of a space can automatically recover the set of open sets of a space. (This
is because K µ X is closed if and only if its complement is open.) If you
expound upon Proposition 16.1.0.2, you will see that you can equivalently
define a topological space through its closed sets, so long as the collection
K of closed sets of X satisfy all the properties in the proposition. It is then
an exercise to show that any such collection K determines a topology T (by
taking the opens to be complements of elements of K).

The next proposition tells you that you can also equivalently define the
notion of continuity through mentioning only closed sets.

One thing you can do freely with closed sets is take intersections, as you
saw in Proposition 16.1.0.2. This allows you to do constructions with closed
sets you can’t do with open sets. For example, one can convert any set into
a closed by taking its closure (which you saw in Proposition 16.1.0.4). This,
informally, gives you a “slightly larger” but closed subset.

In contrast, given some subset B µ X of a topological space, it is almost
impossible to construct a “smallest open set” containing B; you can rather
construct the “largest open set” contained in B, and this is called the interior
of B. Can you construct it?

16.2 Open covers
Definition 16.2.0.1. Let (X,TX) be a topological space. We say that a
collection {U–}–œA of subsets of X is a cover if t

–œA U– = X. We further
say this collection is an open cover if each U– is open.
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I want you to prove the following:

Proposition 16.2.0.2. Let {U–} be an open cover of X. Note there is a
function

p :
·

–œA

U– æ X.

Prove that the induced map

(
·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ).

Remark 16.2.0.3 (Motivation for open covers). Proposition 16.2.0.2 says
that you can reconstruct a space X from an open cover of X. This is some-
thing special to open covers.

For example, given an arbitrary cover {A–}–œA, even if t
–œA A– = X, it

need not be true that Q

a
·

–œA

A–

R

b / ≥ æ X

is a homeomorphism. For example, you could take A = X and Ax = {x}.
Then the above map is a homeomorphism if and only if X has the discrete
topology.

16.3 The Mobius band in RP 2

In the exam I asked you to convince me there is a Möbius band inside the
union U1 fi U2 µ RP 2.

Recall that U1 fi U2 is homeomorphic to the following:

(R2 ·
R2)/ ≥

where the relation ≥ says y ≥ yÕ ≈∆
Y
_____]

_____[

y2 = 1/yÕ
1 and y3 = yÕ

3/y1, y is in the first copy of R2 while yÕ is in the second copy.
y = yÕ y and yÕ are both in the first copy of R2

yÕ = y y and yÕ are both in the second copy of R2

yÕ
2 = 1/y1 and yÕ

3 = y3/y1, y is in the second copy of R2 while yÕ is in the first copy.
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The relation looks more complicated than it needs to; if you are willing, you
can simply think of ≥ as the smallest equivalent relation possible containing
the first line above.

R2 = {(y2, y3)} R2 = {(yÕ
1, yÕ

3)}

Above is a picture of two copies of R2.

R2 R2

We have drawn (dashed) the lines y2 = 0 (in the lefthand copy of R2) and
the yÕ

1 = 0 (in the righthand copy of R2). I draw these because these points
are only related to themselves; they undergo no gluing.
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On the right we have drawn (a portion of) the horizontal line yÕ
3 = a for

some positive real number a. We have only drawn the portion where yÕ
1 > 0.

What points on the right are points on {yÕ
3 = a} related to? Well, we know

y ≥ yÕ ≈∆ y2 = 1/yÕ
1, y3 = yÕ

3/yÕ
1.

In other words, a point of the form (yÕ
1, yÕ

3) = (yÕ
1, 1) on the right is related

to a point of the form (y2, y3) = (1/yÕ
1, 1/yÕ

1) on the left. These are points
where the y2 and y3 coordinates are equal; i.e., this is some part of a line!
Let’s draw the portion where yÕ

1 > 0:

Note, importantly (see the white dot) that when the yÕ
1 coordinate shrinks

toward 0, the y2 coordinate on the right increases.
We can likewise draw how the ray yÕ

3 = ≠1, with yÕ
1 positive, is related to

a ray in the lefthand side, by reasoning that (yÕ
1, ≠1) on the right is related to

(1/yÕ
1, ≠1/yÕ

1) on the left. (Thus, points on this horizontal ray on the right,
are related to points on a line of slope -1 on the left.)

All told, we see that the shaded regions are related to each other as
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follows:

For reasons that will become clear later, let’s just remember the shaded
region BÕ on the right, and the shaded region B on the left:

B BÕ

Now I leave it to you to explore what happens when the yÕ
1 coordinate on

the righthand copy of R2 is negative, which we haven’t considered yet. I
claim you’ll get the following picture (where points on the shaded region are
related to each other in a way I want you to figure out):

Note importantly that though the yÕ
3 coordinates of the dots on the righthand

side were negative, the y3 coordinate of the related points on the righthand
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side are positive! Now consider the regions A and AÕ indicated below:

A AÕ

For your convenience, let me re-draw the regions A, B µ R2 and AÕ, BÕ µ R2:

B BÕA AÕ

I want to emphasize that AÕ and BÕ do not touch; they share no intersection!
(The dashed line is important.)

So finally I am ready to draw the Mobius band inside of U1 fiU2. Consider
the regions C and C Õ below:

BA C C Õ

For example, C Õ contains both AÕ and BÕ, and a little bit more–it contains
some points with yÕ

1 = 0, for example.
While C is a subset of (the left copy of) R2, and C Õ is a subset of (the

right copy of) R2, they are mapped to a U1 fi U2 in a way such that they
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overlap along the arrowed edges. The overlap is interesting; as indicated, the
left edge of C Õ is glued to the left edge of C in a way that “flips” orientation.

C C Õ

Now I leave it to you to glue C and C Õ together along the edges, as indicated;
you wil get a Mobius strip.

Proof of Propositions
Proof of Proposition 16.1.0.2. Note that in this problem, given A µ X, the
complement of A is the complement of A in X. That is, if AC denotes the
complement, we have

AC = {x œ X such that x ”œ A.}.

1. To show the empty set is closed, we must show its complement is open.
We know ÿC = X, and by the definition of topological space, we know X is
open. This shows that the empty set is closed.

To show that X is closed, we must show that its complement is open. We
know XC = ÿ, and the empty set is always open (by definition of topological
space). Thsi shows that X is closed.

2. Since each Ai is closed, we know AC
i is open for every i = 1, . . . , n. By

DeMorgan’s Laws, we have

(
€

i=1,...,n

Ai)C =
‹

i=1,...,n

(AC
i ).

The righthand side is a finite intersection open sets. Hence it is open (by
definition of topological space). Because (t

i=1,...,n Ai)C is open, we conclude
that t

i=1,...,n Ai is closed (by definition of closed set). This finishes the proof.
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3. Again by DeMorgan’s Laws, we have

(
‹

–œA

A–)C =
€

–œA

(AC
– ).

Each AC
– is open because each A– is closed; thus the righthand side is a union

of open sets. Thus the righthand side is open (by definition of topological
space). This shows that (u

–œA A–)C is open, which means u
–œA A– is closed

(by definition of closed set).

Proof of Proposition 16.1.0.3. Let A µ Y be closed. Then AC is open. More-
over,

f≠1(AC) = f≠1(A)C .

(To see this, you need to exhibit each set as a subset of the other. Well, x is
in the lefthand side if f(x) ”œ A. In particular, x ”œ f≠1(A). Likewise, if x is
in the righthand side, then x ”œ f≠1(A), so f(x) ”œ A, meaning x œ f≠1(AC).)

And the lefthand side is open by definition of continuous map. Thus
f≠1(A)C is open, meaning f≠1(A) is closed.

Proof of Proposition 16.1.0.4. Omitted until next time.

Proof of Proposition 16.2.0.2. Let us recall the definition of the disjoint union‡
–,A U–—this is the set of all pairs (x, –) where – œ A and x œ U–. Then

the function p is given by

p :
·

–œA

U– æ X, (x, –) ‘æ x.

That is, p(x, –) = x.
Because {U–} is a cover of X, for every x œ X, there is some – such

that x œ U–. In particular, for every x œ X, there is some (x, –) such that
p(x) = x. This shows that p is a surjection.

In a previous lecture, we showed that whenever p is a surjection, then the
induced function

domain of p/ ≥ æ codomain of p

is a bijection if ≥ is defined by x ≥ xÕ ≈∆ p(x) = p(xÕ). This is exactly
the equivalence relation that we are taking, so we conclude that the induced
map

f : (
·

–œA

U–)/ ≥ æ X
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is a bijection. Note that we have now given this map a name: f .
First let’s show f is continuous. In homework you showed that f is

continuous if and only if p is. (A map from the quotient is continuous if and
only if the its composition with the projection map is.) So let us show p is
continuous. This means we must show that if V µ X is an open subset, then
p≠1(V ) is open. By definition of coproduct topology, p≠1(V ) is open if and
only if

p≠1(V ) fl U–

is open for every – œ A. So let’s prove it. First, we compute:

p≠1(V ) fl U– = { x œ U– such that p(x) œ V } (16.3.1)
= { x œ U– such that x œ V (16.3.2)
= V fl U–. (16.3.3)

Because V µ X is open and U– µ X is open, their (finite) intersection is
open. This shows that p≠1(V ) fl U– is open for every – œ A, and hence that
p≠1(V ) is open. This shows p is continuous. Thus f is continuous.

Now we must show that the inverse map

g : X æ (
·

–

U–)/ ≥

is continuous. For this, it su�ces to show that if a subset V in the codomain
is open, then g≠1(V ) = f(V ) is open. Well, something in the codomain is
open if and only if its preimage under the quotient map is open (by definition
of quotient topology). Thus, a subset V of the codomain is open if and only
if V is the image of some open subset

Ṽ µ
·

–

U–.

Again by definition of coproduct topology, Ṽ then has the property that
Ṽ fi U– is open for every –. But then we have

f(V ) = p(Ṽ ) = p(
€

–

V fl U–) =
€

–

p(V fl U–).

For every –, we know V fl U– is open an open subset of X (because it is a
finite intersection of open sets), so p(V fl U–) = V fl U– is an open subset of
X. In other words, the rightmost term in the above string of equalities is a
union of open sets, and is hence open (by definition of topology). This shows
f(V ) is open, which completes the proof.


