
Lecture 18

Solutions to polynomial
equations are closed

18.0.1 Open covers can reconstruct the space
If you haven’t completed the proof of this proposition, I want you to keep
working on it. It will give you practice with coproducts, quotients, the quo-
tient topology, and homeomorphisms:

Proposition 18.0.1.1 (Proposition 16.2.0.2.). Let {U–} be an open cover
of X. Note there is a function

p :
·

–œA

U– æ X.

Then the induced map
(

·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ)).

18.1 Familiar (?) examples of continuous func-
tions

Going forward, you may rely on the following:
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Exercise 18.1.0.1 (Do only if you want to.). Show that addition,

R ◊ R æ R, (x1, x2) ‘æ x1 + x2

is continuous. (Here, R is given the topology induced by the standard metric.)
Exercise 18.1.0.2 (Do only if you want to.). Show that the multiplication
function

R ◊ R æ R, (x1, x2) ‘æ x1x2

is continuous. (Here, R is given the topology induced by the standard metric.)
Exercise 18.1.0.3 (Do only if you want to.). Show that the following func-
tions are continuous:

1. Fix a real number a œ R. The constant function

R æ R, x ‘æ a.

2. Fix two continuous functions f : R æ R and g : R æ R. The function

R æ R ◊ R, x ‘æ (f(x), g(x)).

18.2 Polynomial functions are continuous
Exercise 18.2.0.1 (Do only if you want to.). (You will need to rely on the
exercises above. If you want, you can try proving the following propositions
without proving the exercises yourself, but taking their truth for granted.)

1. Any polynomial function in one variable is continuous. That is, if one
has a finite collection of real numbers a0, . . . , an, the function

p : R æ R, x ‘æ a0 + a1x + a2x
2 + . . . anxn =

nÿ

i=0
aix

i

is continuous. (Hint: Induction on n.)

2. Any polynomial function in finitely many variables is continuous. That
is, if we are given a real number ai1,...,im for some finite collection of m-
tuples of non-negative integers i1, . . . , im, the function

Rm æ R, (x1, . . . , xm) ‘æ
ÿ

i1,...,im

ai1,...,imxi1
1 . . . xim

m

is continuous. (Hint: A lot of induction.)
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18.3 Some closed subsets of Rn

Prove the following:

Proposition 18.3.0.1. 1. Fix a real number b œ R. Then the (singleton)
set {b} µ R is closed.

2. For every m Ø 1, the (m ≠ 1)-dimensional sphere

Sm≠1 µ Rm

is a closed subset of Rm. (Recall that

Sm≠1 := {(x1, . . . , xm) such that
mÿ

i=1
x2

i = 1}.

As a hint, you can use the fact that for continuous functions, preimages
of closed subsets are closed.)

3. More generally, given any polynomial p in m variables, the set

{x such that p(x) = 0} µ Rm

is a closed subset.

4. Even more generally, given a finite collection of polynomials p1, . . . , pk

in m variables, the set

{x such that pi(x) = 0 for all i} µ Rm

is a closed subset.

5. Even more generally, given an arbitrary collection of polynomials {p–}–œA

in m variables, the set

{x such that p–(x) = 0 for every – œ A} µ Rm

is a closed subset.

Prove the following:
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Proposition 18.3.0.2. 1. Fix a real number a. Then the set

(≠Œ, a] µ R

is closed (under the standard topology).

2. Fix a real number a and let p : Rm æ R be a polynomial function in
m variables. Then the set

{x œ Rm such that p(x) Æ a }

is closed. If you need to, do the same for Ø a rather than Æ a.

18.4 The Heine-Borel Theorem
If you have gotten this far, you can go onto facts that will be useful and that
we will cover later.

Definition 18.4.0.1. A subset A µ R is called bounded if there exists some
positive real number a œ R for which

A µ (≠a, a).

More generally, given a subset A µ Rn, we say that A is bounded if there
exists some positive real number a œ R for which

A µ Ball(0; a).

Prove:

Theorem 18.4.0.2 (Heine-Borel Theorem). A subset A µ Rn is compact if
and only if it is both closed and bounded.


