Lecture 18

Solutions to polynomial equations are closed

18.0.1 Open covers can reconstruct the space

If you haven't completed the proof of this proposition, I want you to keep working on it. It will give you practice with coproducts, quotients, the quotient topology, and homeomorphisms:

Proposition 18.0.1.1 (Proposition 16.2.0.2.). Let $\{U_{\alpha}\}$ be an open cover of X. Note there is a function

$$p: \coprod_{\alpha \in \mathcal{A}} U_{\alpha} \to X.$$

Then the induced map

$$(\coprod_{\alpha\in\mathcal{A}}U_{\alpha})/\sim\to X$$

is a homeomorphism. (Here, the equivalence relation \sim is the one for which $x \sim x' \iff p(x) = p(x')$).

18.1 Familiar (?) examples of continuous functions

Going forward, you may rely on the following:

Exercise 18.1.0.1 (Do only if you want to.). Show that addition,

 $\mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad (x_1, x_2) \mapsto x_1 + x_2$

is continuous. (Here, \mathbb{R} is given the topology induced by the standard metric.)

Exercise 18.1.0.2 (Do only if you want to.). Show that the multiplication function

 $\mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad (x_1, x_2) \mapsto x_1 x_2$

is continuous. (Here, \mathbb{R} is given the topology induced by the standard metric.)

Exercise 18.1.0.3 (Do only if you want to.). Show that the following functions are continuous:

1. Fix a real number $a \in \mathbb{R}$. The constant function

$$\mathbb{R} \to \mathbb{R}, \qquad x \mapsto a.$$

2. Fix two continuous functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. The function

 $\mathbb{R} \to \mathbb{R} \times \mathbb{R}, \qquad x \mapsto (f(x), g(x)).$

18.2 Polynomial functions are continuous

Exercise 18.2.0.1 (Do only if you want to.). (You will need to rely on the exercises above. If you want, you can try proving the following propositions *without* proving the exercises yourself, but taking their truth for granted.)

1. Any polynomial function in one variable is continuous. That is, if one has a finite collection of real numbers a_0, \ldots, a_n , the function

$$p: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto a_0 + a_1 x + a_2 x^2 + \dots a_n x^n = \sum_{i=0}^n a_i x^i$$

is continuous. (Hint: Induction on n.)

2. Any polynomial function in finitely many variables is continuous. That is, if we are given a real number a_{i_1,\ldots,i_m} for some finite collection of *m*-tuples of non-negative integers i_1,\ldots,i_m , the function

$$\mathbb{R}^m \to \mathbb{R}, \qquad (x_1, \dots, x_m) \mapsto \sum_{i_1, \dots, i_m} a_{i_1, \dots, i_m} x_1^{i_1} \dots x_m^{i_m}$$

is continuous. (Hint: A lot of induction.)

18.3 Some closed subsets of \mathbb{R}^n

Prove the following:

- **Proposition 18.3.0.1.** 1. Fix a real number $b \in \mathbb{R}$. Then the (singleton) set $\{b\} \subset \mathbb{R}$ is closed.
 - 2. For every $m \ge 1$, the (m-1)-dimensional sphere

$$S^{m-1} \subset \mathbb{R}^m$$

is a closed subset of \mathbb{R}^m . (Recall that

$$S^{m-1} := \{(x_1, \dots, x_m) \text{ such that } \sum_{i=1}^m x_i^2 = 1\}.$$

As a hint, you can use the fact that for continuous functions, preimages of closed subsets are closed.)

3. More generally, given any polynomial p in m variables, the set

 $\{x \text{ such that } p(x) = 0\} \subset \mathbb{R}^m$

is a closed subset.

4. Even more generally, given a finite collection of polynomials p_1, \ldots, p_k in *m* variables, the set

{x such that $p_i(x) = 0$ for all i} $\subset \mathbb{R}^m$

is a closed subset.

5. Even more generally, given an arbitrary collection of polynomials $\{p_{\alpha}\}_{\alpha \in \mathcal{A}}$ in *m* variables, the set

 $\{x \text{ such that } p_{\alpha}(x) = 0 \text{ for every } \alpha \in \mathcal{A}\} \subset \mathbb{R}^m$

is a closed subset.

Prove the following:

Proposition 18.3.0.2. 1. Fix a real number *a*. Then the set

 $(-\infty, a] \subset \mathbb{R}$

is closed (under the standard topology).

2. Fix a real number a and let $p: \mathbb{R}^m \to \mathbb{R}$ be a polynomial function in m variables. Then the set

$$\{x \in \mathbb{R}^m \text{ such that } p(x) \le a \}$$

is closed. If you need to, do the same for $\geq a$ rather than $\leq a$.

18.4 The Heine-Borel Theorem

If you have gotten this far, you can go onto facts that will be useful and that we will cover later.

Definition 18.4.0.1. A subset $A \subset \mathbb{R}$ is called *bounded* if there exists some positive real number $a \in \mathbb{R}$ for which

$$A \subset (-a, a).$$

More generally, given a subset $A \subset \mathbb{R}^n$, we say that A is bounded if there exists some positive real number $a \in \mathbb{R}$ for which

$$A \subset \text{Ball}(0; a).$$

Prove:

Theorem 18.4.0.2 (Heine-Borel Theorem). A subset $A \subset \mathbb{R}^n$ is compact if and only if it is both closed and bounded.