Lecture 19

Closed balls in metric spaces; Heine-Borel

19.1 The metric function is continuous

Proposition 19.1.0.1. Let $d: X \times X \to \mathbb{R}$ be a metric. Endow X with the metric topology (i.e., the topology induced by the metric) and endow $X \times X$ with the product topology. \mathbb{R} has the standard topology.

- 1. Show that d is continuous.
- 2. For any $x_0 \in X$, show that the function

$$d(x_0, -): X \to \mathbb{R}, \qquad x \mapsto d(x_0, x)$$

is continuous.

Proposition 19.1.0.2. Let $d: X \times X \to \mathbb{R}$ be a metric. Endow X with the metric topology (i.e., the topology induced by the metric) and endow $X \times X$ with the product topology.

1. Fix a real number $a \in \mathbb{R}$. For every $x_0 \in X$, show that

$$\{x \in X \text{ such that } d(x_0, x) = a \}$$

is a closed subset of X.

2. Fix a real number $a \in \mathbb{R}$. For every $x_0 \in X$, show that

 $\{x \in X \text{ such that } d(x_0, x) \leq a \}$

is a closed subset of X. This is called the *closed ball of radius a centered* $at x_0$.

19.2 Proving Heine-Borel

Definition 19.2.0.1 (Definition 18.4.0.1). A subset $A \subset \mathbb{R}$ is called *bounded* if there exists some positive real number $a \in \mathbb{R}$ for which

 $A \subset (-a, a).$

More generally, given a subset $A \subset \mathbb{R}^n$, we say that A is bounded if there exists some positive real number $a \in \mathbb{R}$ for which

$$A \subset \text{Ball}(0; a).$$

Prove:

Theorem 19.2.0.2 (Heine-Borel Theorem, 18.4.0.2.). A subset $A \subset \mathbb{R}^n$ is compact if and only if it is both closed and bounded.

19.3 Summary of this week's knowledge

19.3.1 Examples of closed subsets, and polynomials

- 1. Polynomials are continuous functions
- 2. Solutions to polynomials are closed subsets
- 3. Solutions to inequalities defined by polynomials are closed subsets
- 4. In a metric space, closed balls are closed subsets

19.3.2 Closed and bounded subsets

- 1. You should know the Heine-Borel theorem, even if you don't know its proof.
- 2. You should be able to give examples of closed and bounded subsets of \mathbb{R}^n .