Lecture 20

Proving the Heine-Borel
Theorem

Recall the following definitions:

Definition 20.0.0.1. A topological space is called compact if every open
cover of the space admits a finite subcover.

Definition 20.0.0.2. A subset of a topological space X is called closed if its
complement is open.

Definition 20.0.0.3. A subset A of R” is called bounded if there is some
r € R such that
A C Ball(0;r).

(That is, A is contained in a ball of radius r centered at the origin.)

Today, we will prove:

Theorem 20.0.0.4 (Heine-Borel theorem). Fix A C R™. Then A is compact
if and only if it is closed and bounded.

We will see pay-offs next class.

20.1 Just take these for granted

Here are a few lemmas. You should take them for granted; no need to prove
them. Just read them and try to understand them.
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Lemma 20.1.0.1. Fix two real numbers a,b such that a < b. Then the
interval [a, b] is compact. (We endow [a,b] C R with the subspace topology.)

Lemma 20.1.0.2. Let X and Y be compact. Then X x Y is compact.

Lemma 20.1.0.3 (You proved this in homework). Let X and Y be topo-
logical spaces.

1. Let X be compact. Then any closed subset A C X is compact.

2. Let Y be Hausdorff. Then any compact subset B C Y is closed.

20.2 A proof of Heine-Borel

In your groups, read the following proof of the Heine-Borel theorem. Speak
out when you do not understand some portion of the proof. Make sure you
understand every step.

Proof. Fix n.
(Compact == closed and bounded.) To begin, define a collection of
open balls as follows:

W, = Ball(0;r) C R", r > 0.

Note that the collection {W, },~o forms an open cover of R™.
Now let A C R™ be compact, and define

U.=W,NA.
Then the collection {U,} forms an open cover of A. By compactness of A,
there is a finite subcover, meaning there is a finite collection rq, ..., r, such
that
U u.=4
i€1,...,n

But if r > ¢/, clearly U, D U,, so letting R = max{ry,...,r,}, we have that
A C Wpg. This shows A is bounded.

To show A is closed, we simply cite Lemma 20.1.0.3(2). (Note that R" is
Hausdorff because it is a metric space.)
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(Closed and bounded = compact.) Now suppose A C R" is closed
and bounded. Well, because A is bounded, there is some real number r so
that A C Ball(0;r). In particular, A is contained in the square

[—r,r] x ... x [-r,r] CR™
Here, the lefthand side consists of those points

(X1, ..., 2y)

such that z; € [—r,r] for all i. But the interval [—r,r| is compact by
Lemma 20.1.0.1; so by Lemma 20.1.0.2, the direct product

[—r,r] X ... x [=r7]
is also compact. Moreover, we have
AC[-rr]x...x[-rr] CR"

and because A is closed in R™, we know that A is closed in [—r, 7] x...[—r,7].
Invoking Lemma 20.1.0.3(1), we conclude that A is compact. [

Just to make sure you understood every element of the proof:

1. We used induction at some point. Where?
2. At some point we had to verify that the subspace topology of [—r, 7] x

... X [=r,r] C R"™ equals the product topology of [—r,r| x ... x [—r,7].
Where was the first point we needed to do this?

20.3 Another proof to verify

Remark 20.3.0.1. We will not give a Proof of Lemma 20.1.0.1; it is proven
in most analysis classes.

Make sure you understand every step. This proof should make for good
group discussion.
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Proof of Lemma 20.1.0.2. (I) Let U = {U,}aeca be an open cover of X x Y.
Before we treat a more general case, let us assume that every element of U
is of the form V,, x W,, where V,, C X is open and W, C Y is open.

For every x € X let us consider the subset {z} xY. By definition of cover,
for every element (z,y) € {a} xY, there is some « such that (z,y) € V, xW,.
So choose some collection A, C A so that

U Vax W, D {z} xY.

aEAz

Then the collection {W,, }aea, is an open cover of Y. Because Y is compact,
there is some finite subcover—i.e., some finite subset F, C A, so that

U Wa =Y.

OLGFZ

Now consider the finite intersection

N Ve

aGFm

This is an open subset of X, and we call it V. Note that = € V,,, and

U Vi x W, D {z} xY. (20.3.0.1)

a€F,

In this way, for every x € X, we obtain an open subset V, C X such that
x € V., and such that there exists some finite subset F, C A for which
(20.3.0.1) holds.

The collection {V, },ex forms an open cover of X. By compactness of X,
there exists a finite subcover. Hence there is some finite collection of points
1,...,T, € X so that

Ve, Uolouv,, =X,

It follows that
U U VaxWe=XxY.

Note that the collection {(z;, ) such that o € F,, } is a finite set, while
Vi, C V. Hence we have found a finite subcover:

{Va X Wa}{(aﬁi,a) such that a € Fz, }
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(IT) Now, for the general case. If U = {U} is an arbitrary open cover of

X x Y, for every 3, let us choose a set Cz and open subsets of X and of YV’
so that

Us= |J V, x W,. (20.3.0.2)

7€Cs

Let A = Ugep Cs; then we have an open cover

{V'V X WV}WGA'

We produced a finite subcover of such a collection in (I). So let A’ C A be
the finite subset for which

{VW X Ww}veﬂ’

is an open cover of X x Y. For every v € A’, there exists some §(y) € B for
which
Vi X W, C Upgy)

by design (20.3.0.2). Thus we find

XxYc U xW,cC Uy CXxY.

yEA B(v)

In other words, the collection
{Usn}

is a finite subcover of U.



