Lecture 20

Proving the Heine-Borel Theorem

Recall the following definitions:

Definition 20.0.0.1. A topological space is called *compact* if every open cover of the space admits a finite subcover.

Definition 20.0.0.2. A subset of a topological space X is called *closed* if its complement is open.

Definition 20.0.0.3. A subset A of \mathbb{R}^n is called *bounded* if there is some $r \in \mathbb{R}$ such that

 $A \subset \text{Ball}(0; r).$

(That is, A is contained in a ball of radius r centered at the origin.)

Today, we will prove:

Theorem 20.0.0.4 (Heine-Borel theorem). Fix $A \subset \mathbb{R}^n$. Then A is compact if and only if it is closed and bounded.

We will see pay-offs next class.

20.1 Just take these for granted

Here are a few lemmas. You should take them for granted; no need to prove them. Just read them and try to understand them. **Lemma 20.1.0.1.** Fix two real numbers a, b such that $a \leq b$. Then the interval [a, b] is compact. (We endow $[a, b] \subset \mathbb{R}$ with the subspace topology.)

Lemma 20.1.0.2. Let X and Y be compact. Then $X \times Y$ is compact.

Lemma 20.1.0.3 (You proved this in homework). Let X and Y be topological spaces.

- 1. Let X be compact. Then any closed subset $A \subset X$ is compact.
- 2. Let Y be Hausdorff. Then any compact subset $B \subset Y$ is closed.

20.2 A proof of Heine-Borel

In your groups, read the following proof of the Heine-Borel theorem. Speak out when you do not understand some portion of the proof. Make sure you understand every step.

Proof. Fix n.

(Compact \implies closed and bounded.) To begin, define a collection of open balls as follows:

$$W_r = \text{Ball}(0; r) \subset \mathbb{R}^n, \qquad r > 0.$$

Note that the collection $\{W_r\}_{r>0}$ forms an open cover of \mathbb{R}^n .

Now let $A \subset \mathbb{R}^n$ be compact, and define

$$U_r = W_r \cap A.$$

Then the collection $\{U_r\}$ forms an open cover of A. By compactness of A, there is a finite subcover, meaning there is a finite collection r_1, \ldots, r_n such that

$$\bigcup_{i \in 1, \dots, n} U_{r_i} = A.$$

But if r > r', clearly $U_r \supset U_{r'}$, so letting $R = \max\{r_1, \ldots, r_n\}$, we have that $A \subset W_R$. This shows A is bounded.

To show A is closed, we simply cite Lemma 20.1.0.3(2). (Note that \mathbb{R}^n is Hausdorff because it is a metric space.)

20.3. ANOTHER PROOF TO VERIFY

(Closed and bounded \implies compact.) Now suppose $A \subset \mathbb{R}^n$ is closed and bounded. Well, because A is bounded, there is some real number r so that $A \subset \text{Ball}(0; r)$. In particular, A is contained in the square

$$[-r,r] \times \ldots \times [-r,r] \subset \mathbb{R}^n.$$

Here, the lefthand side consists of those points

$$(x_1,\ldots,x_n)$$

such that $x_i \in [-r, r]$ for all *i*. But the interval [-r, r] is compact by Lemma 20.1.0.1; so by Lemma 20.1.0.2, the direct product

$$[-r,r] \times \ldots \times [-r,r]$$

is also compact. Moreover, we have

$$A \subset [-r,r] \times \ldots \times [-r,r] \subset \mathbb{R}^n$$

and because A is closed in \mathbb{R}^n , we know that A is closed in $[-r, r] \times \ldots [-r, r]$. Invoking Lemma 20.1.0.3(1), we conclude that A is compact.

Just to make sure you understood every element of the proof:

- 1. We used induction at some point. Where?
- 2. At some point we had to verify that the subspace topology of $[-r, r] \times \ldots \times [-r, r] \subset \mathbb{R}^n$ equals the product topology of $[-r, r] \times \ldots \times [-r, r]$. Where was the first point we needed to do this?

20.3 Another proof to verify

Remark 20.3.0.1. We will not give a Proof of Lemma 20.1.0.1; it is proven in most analysis classes.

Make sure you understand every step. This proof should make for good group discussion.

Proof of Lemma 20.1.0.2. (I) Let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ be an open cover of $X \times Y$. Before we treat a more general case, let us assume that every element of \mathcal{U} is of the form $V_{\alpha} \times W_{\alpha}$, where $V_{\alpha} \subset X$ is open and $W_{\alpha} \subset Y$ is open.

For every $x \in X$, let us consider the subset $\{x\} \times Y$. By definition of cover, for every element $(x, y) \in \{a\} \times Y$, there is some α such that $(x, y) \in V_{\alpha} \times W_{\alpha}$. So choose some collection $\mathcal{A}_x \subset \mathcal{A}$ so that

$$\bigcup_{\alpha \in \mathcal{A}_x} V_\alpha \times W_\alpha \supset \{x\} \times Y.$$

Then the collection $\{W_{\alpha}\}_{\alpha \in \mathcal{A}_x}$ is an open cover of Y. Because Y is compact, there is some finite subcover—i.e., some finite subset $F_x \subset \mathcal{A}_x$ so that

$$\bigcup_{\alpha \in F_x} W_\alpha = Y.$$

Now consider the finite intersection

$$\bigcap_{\alpha \in F_x} V_{\alpha}.$$

This is an open subset of X, and we call it V_x . Note that $x \in V_x$, and

$$\bigcup_{\alpha \in F_x} V_x \times W_\alpha \supset \{x\} \times Y.$$
(20.3.0.1)

In this way, for every $x \in X$, we obtain an open subset $V_x \subset X$ such that $x \in V_x$, and such that there exists some finite subset $F_x \subset A$ for which (20.3.0.1) holds.

The collection $\{V_x\}_{x\in X}$ forms an open cover of X. By compactness of X, there exists a finite subcover. Hence there is some finite collection of points $x_1, \ldots, x_n \in X$ so that

$$V_{x_1} \cup \ldots \cup V_{x_n} = X.$$

It follows that

$$\bigcup_{x_1,\dots,x_n} \bigcup_{\alpha \in F_{x_i}} V_{x_i} \times W_{\alpha} = X \times Y.$$

Note that the collection $\{(x_i, \alpha) \text{ such that } \alpha \in F_{x_i}\}$ is a finite set, while $V_{x_i} \subset V_{\alpha}$. Hence we have found a finite subcover:

$$\{V_{\alpha} \times W_{\alpha}\}_{\{(x_i,\alpha) \text{ such that } \alpha \in F_{x_i}\}}$$

20.3. ANOTHER PROOF TO VERIFY

(II) Now, for the general case. If $\mathcal{U} = \{U_{\beta}\}$ is an arbitrary open cover of $X \times Y$, for every β , let us choose a set \mathcal{C}_{β} and open subsets of X and of Y so that

$$U_{\beta} = \bigcup_{\gamma \in \mathcal{C}_{\beta}} V_{\gamma} \times W_{\gamma}. \tag{20.3.0.2}$$

Let $\mathcal{A} = \bigcup_{\beta \in \mathcal{B}} \mathfrak{C}_{\beta}$; then we have an open cover

$$\{V_{\gamma} \times W_{\gamma}\}_{\gamma \in \mathcal{A}}.$$

We produced a finite subcover of such a collection in (I). So let $\mathcal{A}' \subset \mathcal{A}$ be the finite subset for which

$$\{V_{\gamma} \times W_{\gamma}\}_{\gamma \in \mathcal{A}'}$$

is an open cover of $X \times Y$. For every $\gamma \in \mathcal{A}'$, there exists some $\beta(\gamma) \in \mathcal{B}$ for which

$$V_{\gamma} \times W_{\gamma} \subset U_{\beta(\gamma)}$$

by design (20.3.0.2). Thus we find

$$X \times Y \subset \bigcup_{\gamma \in \mathcal{A}'} U_{\gamma} \times W_{\gamma} \subset \bigcup_{\beta(\gamma)} U_{\beta(\gamma)} \subset X \times Y.$$

In other words, the collection

$$\{U_{\beta(\gamma)}\}$$

is a finite subcover of \mathcal{U} .