
Lecture 20

Proving the Heine-Borel
Theorem

Recall the following definitions:

Definition 20.0.0.1. A topological space is called compact if every open
cover of the space admits a finite subcover.

Definition 20.0.0.2. A subset of a topological space X is called closed if its
complement is open.

Definition 20.0.0.3. A subset A of Rn is called bounded if there is some
r œ R such that

A µ Ball(0; r).

(That is, A is contained in a ball of radius r centered at the origin.)

Today, we will prove:

Theorem 20.0.0.4 (Heine-Borel theorem). Fix A µ Rn. Then A is compact
if and only if it is closed and bounded.

We will see pay-o�s next class.

20.1 Just take these for granted
Here are a few lemmas. You should take them for granted; no need to prove
them. Just read them and try to understand them.
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Lemma 20.1.0.1. Fix two real numbers a, b such that a Æ b. Then the
interval [a, b] is compact. (We endow [a, b] µ R with the subspace topology.)

Lemma 20.1.0.2. Let X and Y be compact. Then X ◊ Y is compact.

Lemma 20.1.0.3 (You proved this in homework). Let X and Y be topo-
logical spaces.

1. Let X be compact. Then any closed subset A µ X is compact.

2. Let Y be Hausdor�. Then any compact subset B µ Y is closed.

20.2 A proof of Heine-Borel
In your groups, read the following proof of the Heine-Borel theorem. Speak
out when you do not understand some portion of the proof. Make sure you
understand every step.

Proof. Fix n.
(Compact =∆ closed and bounded.) To begin, define a collection of

open balls as follows:

Wr = Ball(0; r) µ Rn, r > 0.

Note that the collection {Wr}r>0 forms an open cover of Rn.
Now let A µ Rn be compact, and define

Ur = Wr fl A.

Then the collection {Ur} forms an open cover of A. By compactness of A,
there is a finite subcover, meaning there is a finite collection r1, . . . , rn such
that €

iœ1,...,n

Uri = A.

But if r > rÕ, clearly Ur ∏ UrÕ , so letting R = max{r1, . . . , rn}, we have that
A µ WR. This shows A is bounded.

To show A is closed, we simply cite Lemma 20.1.0.3(2). (Note that Rn is
Hausdor� because it is a metric space.)



20.3. ANOTHER PROOF TO VERIFY 3

(Closed and bounded =∆ compact.) Now suppose A µ Rn is closed
and bounded. Well, because A is bounded, there is some real number r so
that A µ Ball(0; r). In particular, A is contained in the square

[≠r, r] ◊ . . . ◊ [≠r, r] µ Rn.

Here, the lefthand side consists of those points

(x1, . . . , xn)

such that xi œ [≠r, r] for all i. But the interval [≠r, r] is compact by
Lemma 20.1.0.1; so by Lemma 20.1.0.2, the direct product

[≠r, r] ◊ . . . ◊ [≠r, r]

is also compact. Moreover, we have

A µ [≠r, r] ◊ . . . ◊ [≠r, r] µ Rn

and because A is closed in Rn, we know that A is closed in [≠r, r]◊ . . . [≠r, r].
Invoking Lemma 20.1.0.3(1), we conclude that A is compact.

Just to make sure you understood every element of the proof:

1. We used induction at some point. Where?

2. At some point we had to verify that the subspace topology of [≠r, r] ◊
. . . ◊ [≠r, r] µ Rn equals the product topology of [≠r, r] ◊ . . . ◊ [≠r, r].
Where was the first point we needed to do this?

20.3 Another proof to verify
Remark 20.3.0.1. We will not give a Proof of Lemma 20.1.0.1; it is proven
in most analysis classes.

Make sure you understand every step. This proof should make for good
group discussion.
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Proof of Lemma 20.1.0.2. (I) Let U = {U–}–œA be an open cover of X ◊ Y .
Before we treat a more general case, let us assume that every element of U
is of the form V– ◊ W–, where V– µ X is open and W– µ Y is open.

For every x œ X, let us consider the subset {x}◊Y . By definition of cover,
for every element (x, y) œ {a}◊Y , there is some – such that (x, y) œ V–◊W–.
So choose some collection Ax µ A so that

€

–œAx

V– ◊ W– ∏ {x} ◊ Y.

Then the collection {W–}–œAx is an open cover of Y . Because Y is compact,
there is some finite subcover—i.e., some finite subset Fx µ Ax so that

€

–œFx

W– = Y.

Now consider the finite intersection
‹

–œFx

V–.

This is an open subset of X, and we call it Vx. Note that x œ Vx, and
€

–œFx

Vx ◊ W– ∏ {x} ◊ Y. (20.3.0.1)

In this way, for every x œ X, we obtain an open subset Vx µ X such that
x œ Vx, and such that there exists some finite subset Fx µ A for which
(20.3.0.1) holds.

The collection {Vx}xœX forms an open cover of X. By compactness of X,
there exists a finite subcover. Hence there is some finite collection of points
x1, . . . , xn œ X so that

Vx1 fi . . . fi Vxn = X.

It follows that €

x1,...,xn

€

–œFxi

Vxi ◊ W– = X ◊ Y.

Note that the collection {(xi, –) such that – œ Fxi } is a finite set, while
Vxi µ V–. Hence we have found a finite subcover:

{V– ◊ W–}{(xi,–) such that – œ Fxi }
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(II) Now, for the general case. If U = {U—} is an arbitrary open cover of
X ◊ Y , for every —, let us choose a set C— and open subsets of X and of Y
so that

U— =
€

“œC—

V“ ◊ W“. (20.3.0.2)

Let A = t
—œB C—; then we have an open cover

{V“ ◊ W“}“œA.

We produced a finite subcover of such a collection in (I). So let AÕ µ A be
the finite subset for which

{V“ ◊ W“}“œAÕ

is an open cover of X ◊ Y . For every “ œ AÕ, there exists some —(“) œ B for
which

V“ ◊ W“ µ U—(“)

by design (20.3.0.2). Thus we find

X ◊ Y µ
€

“œAÕ
U“ ◊ W“ µ

€

—(“)
U—(“) µ X ◊ Y.

In other words, the collection
{U—(“)}

is a finite subcover of U.


