
Proofs of Propositions and
selected exercises (Lectures 16 -
20)

Proposition 16.1.0.2 Let (X,T) be a topological space. For this problem,
we let K denote the collection of closed subsets. Show the following are true:

1. ÿ, X œ K.

2. If A1, . . . , An œ K is a finite collection, then t
i=1,...,n Ai is in K.

3. For an arbitrary collection {A–}–œA of elements of K, we have that the
intersection u

–œA A– is also in K.

Proof of Proposition 16.1.0.2. Note that in this problem, given A µ X, the
complement of A is the complement of A in X. That is, if AC denotes the
complement, we have

AC = {x œ X such that x ”œ A.}.

1. To show the empty set is closed, we must show its complement is open.
We know ÿC = X, and by the definition of topological space, we know X is
open. This shows that the empty set is closed.

To show that X is closed, we must show that its complement is open. We
know XC = ÿ, and the empty set is always open (by definition of topological
space). Thsi shows that X is closed.

2. Since each Ai is closed, we know AC
i is open for every i = 1, . . . , n. By

DeMorgan’s Laws, we have

(
€

i=1,...,n

Ai)C =
‹

i=1,...,n

(AC
i ).
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2 LECTURE 20. PROVING THE HEINE-BOREL THEOREM

The righthand side is a finite intersection open sets. Hence it is open (by
definition of topological space). Because (t

i=1,...,n Ai)C is open, we conclude
that t

i=1,...,n Ai is closed (by definition of closed set). This finishes the proof.
3. Again by DeMorgan’s Laws, we have

(
‹

–œA

A–)C =
€

–œA

(AC
– ).

Each AC
– is open because each A– is closed; thus the righthand side is a union

of open sets. Thus the righthand side is open (by definition of topological
space). This shows that (u

–œA A–)C is open, which means u
–œA A– is closed

(by definition of closed set).

Proposition 16.1.0.3 Let f : X æ Y be a continuous map of topological
spaces. Show that if A µ Y is closed, then its preimage is closed.

Conversely, suppose that f : X æ Y is a function such that whenever
A µ Y is closed, its preimage is closed. Prove that f is continuous.

Proof of Proposition 16.1.0.3. Let A µ Y be closed. Then AC is open. More-
over,

f≠1(AC) = f≠1(A)C .

(To see this, you need to exhibit each set as a subset of the other. Well, x is
in the lefthand side if f(x) ”œ A. In particular, x ”œ f≠1(A). Likewise, if x is
in the righthand side, then x ”œ f≠1(A), so f(x) ”œ A, meaning x œ f≠1(AC).)

And the lefthand side is open by definition of continuous map. Thus
f≠1(A)C is open, meaning f≠1(A) is closed.

Proposition 16.1.0.4. Let B µ X be an arbitrary subset. Show that
there exists a subset, B µ X, satisfying the following properties:

1. B µ B

2. B is closed.

3. Moreover, if C is any other closed subset of X containing B, then C
contains B.

Proof of Proposition 16.1.0.4. Given B, let KB denote the collection of all
subsets K µ X for which (i) K is closed, and (ii) K contains B. Note that
KB is non-empty because it contains X. Now we define

B :=
‹

KœKB

K.
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We see B is closed because arbitrary intersections of closed sets are closed
(proving 2.). We also see that B contains B because B is contained in every
K œ KB (proving 1). Finally, if C is any other closed subset of X containing
B, then C œ KB, so in particular, C ∏ u

KœKB
K (proving 3).

Proposition 16.2.0.2. Let {U–} be an open cover of X. Note there is
a function

p :
·

–œA

U– æ X.

Prove that the induced map

(
·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ).

Proof of Proposition 16.2.0.2. Let us recall the definition of the disjoint union‡
–,A U–—this is the set of all pairs (x, –) where – œ A and x œ U–. Then

the function p is given by

p :
·

–œA

U– æ X, (x, –) ‘æ x.

That is, p(x, –) = x.
Because {U–} is a cover of X, for every x œ X, there is some – such

that x œ U–. In particular, for every x œ X, there is some (x, –) such that
p(x) = x. This shows that p is a surjection.

In a previous lecture, we showed that whenever p is a surjection, then the
induced function

domain of p/ ≥ æ codomain of p

is a bijection if ≥ is defined by x ≥ xÕ ≈∆ p(x) = p(xÕ). This is exactly
the equivalence relation that we are taking, so we conclude that the induced
map

f : (
·

–œA

U–)/ ≥ æ X

is a bijection. Note that we have now given this map a name: f .
First let’s show f is continuous. In homework you showed that f is

continuous if and only if p is. (A map from the quotient is continuous if and
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only if the its composition with the projection map is.) So let us show p is
continuous. This means we must show that if V µ X is an open subset, then
p≠1(V ) is open. By definition of coproduct topology, p≠1(V ) is open if and
only if

p≠1(V ) fl U–

is open for every – œ A. So let’s prove it. First, we compute:

p≠1(V ) fl U– = { x œ U– such that p(x) œ V }
= { x œ U– such that x œ V

= V fl U–.

Because V µ X is open and U– µ X is open, their (finite) intersection is
open. This shows that p≠1(V ) fl U– is open for every – œ A, and hence that
p≠1(V ) is open. This shows p is continuous. Thus f is continuous.

Now we must show that the inverse map

g : X æ (
·

–

U–)/ ≥

is continuous. For this, it su�ces to show that if a subset V in the codomain
is open, then g≠1(V ) = f(V ) is open. Well, something in the codomain is
open if and only if its preimage under the quotient map is open (by definition
of quotient topology). Thus, a subset V of the codomain is open if and only
if V is the image of some open subset

Ṽ µ
·

–

U–.

Again by definition of coproduct topology, Ṽ then has the property that
Ṽ fi U– is open for every –. But then we have

f(V ) = p(Ṽ ) = p(
€

–

V fl U–) =
€

–

p(V fl U–).

For every –, we know V fl U– is open an open subset of X (because it is a
finite intersection of open sets), so p(V fl U–) = V fl U– is an open subset of
X. In other words, the rightmost term in the above string of equalities is a
union of open sets, and is hence open (by definition of topology). This shows
f(V ) is open, which completes the proof.



20.3. ANOTHER PROOF TO VERIFY 5

Proposition 17.1.0.3 Let A = X ◊R>0 be the set of pairs (x, r) where
x œ X and r is a positive real number. Let (X, d) be a metric space, and
equip it with the induced topology.

(i) The collection
U = {Ball(x, r)}(x,r)œA

is an open cover of X.
(ii) Now let B µ A denote the set of pairs (x, r) where x œ x and r is a

positive rational number. (So B = X ◊ Q.) Then {U—}—œB is a subcover of
U.

Proof of 17.1.0.3. (i) By definition of metric topology (i.e., the topology in-
duced by the metric), every Ball(x, r) is open. Moreover, for ever x œ X,
clearly x œ Ball(x, r) for any r > 0, so we conclude X µ t

(x,r)œA Ball(x, r).
On the other hand, the union t

(x,r)œA is clearly a subset of X, being a union
of subsets of X. This proves that U is an open cover.

(ii) There is a typo; B does not equal X ◊Q, but it equals X ◊Q>0—i.e.,
X times the set of positive rational numbers. Regardless, for any rational
positive number r and any x œ X, we have that x œ Ball(x, r), so we again
have that X = t

(x,r)œB Ball(x, r). This proves the claim.

Exercise 17.0.0.3 Show that this definition is equivalent to the old one:
“ We say that a collection {U–}–œA of subsets of X is a cover if t

–œA U– = X.
We further say this collection is an open cover if each U– is open.”

Solution to Exercise 17.0.0.3. The notation {U–}–œA means that we have
some set A, and for every – œ A, we have specified some open subset U– µ X.
That is the same information as giving a function from A to T. And of course,
if U– œ T, it is open by definition.

The “cover” part of the definitions are identical, so there is nothing to
check there.

Exercise 17.1.0.2 Let U be an open cover. Then a subcover of U is the
same data as a choice of subset B µ A such that the composition

B æ A æ T

is an open cover of X.
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Solution to Exercise 17.1.0.2. As stated, the exercise isn’t quite correct; we’ll
see why. Suppose you have an open cover {U–}–œA.

The first definition (17.1.0.1) says {U—}—œB is a subcover if (i) if the uniont
—œB U— is equal to X, (ii) for every —, there is an – so that U– = U—.

The second definition (17.1.0.2) is identical for (i). Above, (ii) says we
can find a function i : B æ A so that Ui(—) = U–.

Exercise 18.1.0.1 Show that addition,

R ◊ R æ R, (x1, x2) ‘æ x1 + x2

is continuous. (Here, R is given the topology induced by the standard metric.)

Proof of 18.1.0.1. For notation’s sake, let’s call the addition function f , so
that f(x1, x2) = x1 + x2. We will use the ‘-” criterion to prove that f is
continuous.

Fix x = (a, b) œ R2 and fix ‘ > 0. Then

U := f≠1((a + b ≠ ‘, a + b + ‘))

is the region in R2 contained (strictly) between the two lines x1+x2 = a+b≠‘
and x1 + x2 = a + b + ‘. We must now find ” so that the open ball of radius
” around (a, b) is contained in U .

For this let us use some geometry. Clearly, the open diamond/rhombus
of total width 2‘ and total height 2‘, centered at (a, b), is contained in U .

•(a,b)

In turn, the open ball of radius
Ò

‘/2 is contained in this open rhombus.
Thus setting ” =

Ò
‘/2, we are finished.
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Exercise 18.1.0.2 Show that the multiplication function

R ◊ R æ R, (x1, x2) ‘æ x1x2

is continuous. (Here, R is given the topology induced by the standard metric.)

Proof of 18.1.0.2. Fix a point (a, b) œ R2. The note that for any d œ R, we
have that

(a + d)(b + d) = ab + (b + a)d + d2.

And in particular,

dRstd
(ab, (a + d)(b + d)) = |(b + a)d + d2| Æ |b + a||d| + |d|2.

Note that given ‘ > 0, the sum |b + a||d| + |d|2 is less than ‘ if each term of
the sum is less than ‘/2—that is, if

|b + a||d| < ‘/2 and |d|2 < ‘/2.

So let ” be any positive real number such that

” < min{‘/2(|b + a|),
Ò

‘/2}.

Then we are finished.

Exercise 18.1.0.3 Show that the following functions are continuous:

1. Fix a real number a œ R. The constant function

R æ R, x ‘æ a.

2. Fix two continuous functions f : R æ R and g : R æ R. The function

R æ R ◊ R, x ‘æ (f(x), g(x)).

Proof of 18.1.0.3. 1. Given any ‘, any ” will do.
2. You’ve shown this in your homework for metric spaces. More generally,

let W, X, Y be topological spaces, and fix two continuous function f : W æ X
and g : W æ Y . We will show that h : W æ X ◊ Y, h(w) := ((f(w), g(w))),
is continuous.
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Let A µ X ◊ Y be open. By definition (of product topology),

A =
€

–œA

U– ◊ V–

for some set A, and where U– µ X and V– µ Y are open. Note that

h≠1(U– ◊ V–) = f≠1(U–) fl g≠1(V–).

Because f and g are continuous, we see that h≠1(U– ◊ V–) is thus an inter-
section of two open sets—thus, h≠1(U– ◊ V–) is open. We conclude that

h≠1(W ) =
€

–œA

h≠1(U– ◊ V–)

so h≠1(W ) is an open subset of X (being a union of open subsets). This
concludes the proof.

Exercise 18.2.0.1 (You will need to rely on the exercises above. If you
want, you can try proving the following propositions without proving the
exercises yourself, but taking their truth for granted.)

1. Any polynomial function in one variable is continuous. That is, if one
has a finite collection of real numbers a0, . . . , an, the function

p : R æ R, x ‘æ a0 + a1x + a2x
2 + . . . anxn =

nÿ

i=0
aix

i

is continuous. (Hint: Induction on n.)

2. Any polynomial function in finitely many variables is continuous. That
is, if we are given a real number ai1,...,im for some finite collection of m-
tuples of non-negative integers i1, . . . , im, the function

Rm æ R, (x1, . . . , xm) ‘æ
ÿ

i1,...,im

ai1,...,imxi1
1 . . . xim

m

is continuous. (Hint: A lot of induction.)

Proof of 18.2.0.1. 1. First, let us prove that the function fn : x ‘æ xn is
continuous. We will perform induction on the degree n. For n = 1 this
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is obvious. For n = 2, we note that fn(x) = f1(x) · fn≠1(x). This is the
composition

R (f1,fn≠1)≠≠≠≠≠æ R ◊ R multiplication≠≠≠≠≠≠≠æ R.

The second arrow is continuous by Exercise 18.1.0.2. the first arrow is con-
tinuous by Exercise 18.1.0.32 and by induction. Because the composition of
continuous functions is continuous, we conclude that fn is continuous given
that fn≠1 is continuous.

Second, let us now note that the function x ‘æ axn (for any constant
a œ R) is continuous. This function can again be written as a composition

R (a,fn≠1)≠≠≠≠≠æ R ◊ R multiplication≠≠≠≠≠≠≠æ R.

which is continuous by combining the inductive proof above with Exercise
18.1.0.31.

Finally, we must prove that the polynomial function p is continuous. We
proceed by induction by the degree n of p. For n = 0, p is the constant
function x ‘æ a0. this is continuous by a previous exercise (18.1.0.3 1). Now
suppose that any polynomial q of degree n ≠ 1 is continuous. Then p can be
written as a composition

R (q,anxn)≠≠≠≠≠æ R ◊ R addition≠≠≠≠æ R

where q(x) = a0 + a1x1 + . . . an≠1xn≠1. Each function in this composition is
continuous, hence so is the composition. This completes the proof of 1.

2. Omitted.

Proposition 18.3.0.1

1. Fix a real number b œ R. Then the (singleton) set {b} µ R is closed.

2. For every m Ø 1, the (m ≠ 1)-dimensional sphere

Sm≠1 µ Rm

is a closed subset of Rm. (Recall that

Sm≠1 := {(x1, . . . , xm) such that
mÿ

i=1
x2

i = 1}.

As a hint, you can use the fact that for continuous functions, preimages
of closed subsets are closed.)
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3. More generally, given any polynomial p in m variables, the set

{x such that p(x) = 0} µ Rm

is a closed subset.

4. Even more generally, given a finite collection of polynomials p1, . . . , pk

in m variables, the set

{x such that pi(x) = 0 for all i} µ Rm

is a closed subset.

5. Even more generally, given an arbitrary collection of polynomials {p–}–œA

in m variables, the set

{x such that p–(x) = 0 for every – œ A} µ Rm

is a closed subset.

Proof of 18.3.0.1. 1. The complement U = R \ {b} is open. (For example,
for any x œ U , the open ball Ball(x; |b ≠ x|) is contained in U .) This shows
that {b} µ R is closed.

2. Let p(x1, . . . , xm) = x2
1 + . . . x2

m. This is a function p : Rm æ R, and is
continuous because it is polynomial. Hence preimages of closed subsets are
closed. Now we note that {1} µ RR is closed by the previous part of this
problem, and we note that p≠1({1}) = Sm≠1.

3. Same proof, but by taking {b} = {0} µ R.
4. Given part 3., note that the set in questin is the intersection of

p≠1
i ({0}); i.e., an intersection of closed subsets of Rm. Hence it is closed.

4. Same proof.

Proposition 18.3.0.2

1. Fix a real number a. Then the set

(≠Œ, a] µ R

is closed (under the standard topology).
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2. Fix a real number a and let p : Rm æ R be a polynomial function in
m variables. Then the set

{x œ Rm such that p(x) Æ a }

is closed. If you need to, do the same for Ø a rather than Æ a.

Proof of Proposition 19.1.0.1. 1. The set U = (a, Œ) µ R is open. For
example, for any x œ U , we have that the open ball Ball(x; |a≠x|) is contained
in U . This shows UC = (≠Œ, a] is closed.

2. The indicated set is p≠1((≠Œ, a]). Because p is continuous (Exercise
18.2.0.11), and preimages of closed sets are closed sets for continuous maps,
the claim follows from the previous part of this problem.

Proposition 19.1.0.1. Let d : X ◊ X æ R be a metric. Endow X with
the metric topology (i.e., the topology induced by the metric) and endow
X ◊ X with the product topology. R has the standard topology.

1. Show that d is continuous.

2. For any x0 œ X, show that the function

d(x0, ≠) : X æ R, x ‘æ d(x0, x)

is continuous.

Proof of 19.1.0.1. 1. We use the ‘-” criterion, remembering that the product
metric is given by

dX◊Y ((x, y), (xÕ, yÕ)) = dX(x, xÕ) + dY (y, yÕ).

(In this problem, Y happens to equal X.) So fix (x1, x2) œ X ◊X along with
‘ > 0. For any ”, we have that

dX◊X((x1, x2), (xÕ
1, xÕ

2)) < ” =∆ d(x1, xÕ
1) + d(x2, xÕ

2) < ”. (19.3.0.3)

Keep the above in mind. Now let’s repeatedly apply the triangle inequality:

d(xÕ
1, xÕ

2) Æ d(xÕ
1, x1)+d(x1, xÕ

2) Æ d(xÕ
1, x1)+d(x1, x2)+d(x2, xÕ

2). (19.3.0.4)

By symmetry, we also conclude

d(x1, x2) Æ d(xÕ
1, x1) + d(xÕ

1, xÕ
2) + d(x2, xÕ

2). (19.3.0.5)
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Combining (19.3.0.4) and (19.3.0.5) we obtain:
|d(x1, x2) ≠ d(xÕ

1, xÕ
2)| Æ d(xÕ

1, x1) + d(x2, xÕ
2).

By the previous equation (19.3.0.3), we conclude
|d(x1, x2) ≠ d(xÕ

1, xÕ
2)| Æ 2”.

Thus choosing ” to be any number less than ‘/2, we are finished.
2. We note that the function in question is a composition

X æ X ◊ X
d≠æ R

where the first function sends x ‘æ (x0, x). So it su�ces to prove that for
any x0 œ X, the “horizontal inclusion” function

X æ X◊, x ‘æ (x0, x)
is continuous. Because X is a metric space, let us use the ‘-” criterion. Given
‘, let ” be any positive number less than ‘. Then if d(x, xÕ) < ‘, we see that

dX◊X((x0, x), (x0, xÕ)) = d(x0, x0) + d(x, xÕ) = 0 + ” < ‘.

Proposition 19.1.0.2 Let d : X ◊ X æ R be a metric. Endow X with
the metric topology (i.e., the topology induced by the metric) and endow
X ◊ X with the product topology.

1. Fix a real number a œ R. For every x0 œ X, show that
{ x œ X such that d(x0, x) = a }

is a closed subset of X.

2. Fix a real number a œ R. For every x0 œ X, show that
{ x œ X such that d(x0, x) Æ a }

is a closed subset of X. This is called the closed ball of radius a centered
at x0.

Proof of 19.1.0.2. 1. By Proposition 18.3.0.1, the set {a} µ R is closed. We
know that for all x0 œ X, the function x ‘æ d(x0, x) is continuous (Proposi-
tion 19.1.0.1(2)). Thus the preimage of {a} is closed, and the set in question
is precisely said preimage.

2. Same exact proof, except we take our closed set in R to be (≠Œ, a] µ R.
(This is closed by Proposition 18.3.0.2(1).)


