
Lecture 22

More on connectedness

22.1 Some basics
Let’s make explicit the following:

Proposition 22.1.0.1 (Inclusions are continuous.). Let A µ X and give
A the subspace topology. Then the inclusion function ÿ : A æ X given by
ÿ(a) = a is continuous.

Proof. Suppose W µ X is open. Then ÿ≠1(W ) = A fl W . This is open by
definition of subspace topology.

Proposition 22.1.0.2 (Maps to images of continuous maps are continuous).
Let f : X æ Y be continuous, and endow f(X) µ Y with the subspace
topology. Then the function X æ f(X) sending x ‘æ f(x) is continuous.

Proof. Suppose V µ f(X) is open. Then there exists some subset W µ Y
for which V = W fl f(X). In particular, f≠1(V ) = f≠1(W ). The latter is
open in X by definition of continuity, so f≠1(V ) µ X is open.

Proposition 22.1.0.3 (Subspace topologies factor). Let X µ Y µ Z and
let Z be a topological space. Then the following topologies on X are equal:

• The subspace topology TXµZ of X as a subset of Z.

• The subspace topology TXµY of X as a subset of Y (where Y is given
the subspace topology, induced by virtue of Y being a subset of Z).
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Proof. (TXµZ µ TXµY ). Let U œ TXµZ . Then by definition, there exists
some W µ Z open for which U = X fl W .

then we see that U = X fl W = X fl (Y fl W ), where the last equality
is true because X µ Y . By definition of subspace topology (for Y ), we see
that V = Y fl W is an open subset of Y . Then U = X fl V implies that
U œ TXµY .

(TXµY µ TXµZ). If U œ TXµY , there is some open subset V œ TY for
which U = V flX. By definition of subspace topology (for Y ), we know there
exists some W µ Z open so that W fl Y = V . Hence

U = X fl V = X fl (W fl Y ) = W fl (X fl Y ) = W fl X

meaning U œ TXµZ .
This finishes the proof.

22.2 An application of connectedness
Let’s recall some ideas from last time. We saw two very di�erent-looking
notions of connectedness:

Definition 22.2.0.1 (Path-connected). Let X be a topological space. We
say X is path-connected if for every x, xÕ œ X, there exists a continuous map
“ : [0, 1] æ X such that “(0) = x and “(1) = xÕ.

Definition 22.2.0.2 (Connected). Let X be a topological space. We say X
is connected if the following hold: If A µ X is both open and closed, then A
is either ÿ or X.

We also saw:

Proposition 22.2.0.3. The interval [0, 1] is connected.

Let’s see one application of the idea of connectedness. The intuition for
the following is that if a function f is continuous, it does not tear apart
things that are connected.

Proposition 22.2.0.4 (Continuous functions preserve connectedness). Let
f : X æ Y be a continuous function. If X is connected, then f(X) is
connected. If X is path-connected, then so is f(X).
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(Note that f(X) µ Y is being given the subspace topology.)

Proof of Proposition 22.2.0.4. Let A µ f(X) be both open and closed. Then
f≠1(A) µ X is both open and closed. (This is because the map X æ f(X)
is closed by the Lemma.) Hence f≠1(A) must either be X or ÿ. The former
means that A must equal f(X). The latter means that A must be empty by
definition of the image f(X).

Hence f(X) is connected.
As for path-connectedness: Let y, yÕ œ f(X). Choose x, xÕ œ X so that

f(x) = y and f(xÕ) = yÕ. Because X is path-connected, there exists “ :
[0, 1] æ X for which “(0) = x and “(1) = xÕ. Now let “Õ = f ¶ “. This is
continuous because f and “ are. Moreover,

“Õ(0) = f(“(0)) = y, “Õ(1) = f(“(1)) = yÕ.

Exercise 22.2.0.5. Prove the following: If X is connected and Y is not,
there exists no continuous surjection from X to Y .

Likewise, if X is path-connected but Y is not, there exists no continuous
surjection from X to Y .

Exercise 22.2.0.6. Show that if X is connected, then for any equivalence
relation X/ ≥, the quotient space X/ ≥ is connected.

Likewise, show that if X is path-connected, then for any equivalence
relation X/ ≥, the quotient X/ ≥ is path-connected.

Exercise 22.2.0.7. Show that RP 2 is path-connected and connected.

22.3 Connectedness is not path-connectedness
Last time we saw that if X is path-connected, then it is connected. We will
see that the converse does not hold.

Definition 22.3.0.1 (Topologist’s sine curve). We let X be the following
union:

{(x1, x2) | x1 = 0}
€

{(x1, x2) | x1 > 0 and x2 = sin(1/x1) } µ R2.

We endow X with the subspace topology (inherited from R2). We call X the
topologist’s sine curve.
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Exercise 22.3.0.2. Draw X (in R2).

Remark 22.3.0.3. The name “topologist’s sine curve” is popular, but prob-
ably insinuates an immature separation of mathematical subjects. This space
is no more a topologist’s than anybody else’s.

Theorem 22.3.0.4. X is connected, but it is not path-connected.

Before we prove the theorems, let’s set some notation. We set

A = {(x1, x2) | x1 = 0}

and
B = {(x1, x2) | x1 > 0 and x2 = sin(1/x1) }

so we have that
X = A fi B.

Remark 22.3.0.5. The following is what B looks like:

What happens as the x1 coordinate approaches zero? One description might
be that the x2 coordinate oscillates—and it oscillates “faster and faster”.

Lemma 22.3.0.6. A and B are both homeomorphic to R.

Proof. I claim that the function

R æ A, x ‘æ (0, x)

is a homeomorphism. I will leave the proof to you.
As for B, consider the maps

R>0 æ B, t ‘æ (t, sin(1/t))
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and
B æ R?0, (x1, x2) ‘æ x1.

These are both continuous and are inverses to each other. Moreover, R>0
is homeomorphic to R by taking, for example, the log and exp maps. This
concludes the proof.

Lemma 22.3.0.7. if U is an open subset of X and contains all of A, then
it intersects B.

Proof. Let U µ X be open. If A µ U , let x = (0, 1) œ A. Because U is an
open subset of X, by definition of subspace topology, U is the intersection
W fl X for some open subset W µ R2. In particular, there must be some
” > 0 so that the open ball of radius ” centered at x is contained in W . But
given any ”¡ there exists some number positive xÕ

1 < ” so that 1/xÕ
1 is an

integer multiple of fi/2; in particular, there is some positive xÕ
1 < ” so that

(xÕ
1, sin(1/xÕ

1)) œ Ball(x, ”).

That is, Ball(x, ”) fl B is non-empty. This shows that for any W µ R2 for
which W fl X ∏ A, we have that W fl B ”= ÿ. That is, W intersects B, so U
intersects B as well.

Lemma 22.3.0.8. If K is a closed subset of X that contains all of B, then
it must intersect A.

We will see a proof of this next time, when we discuss closures and closed
subsetes of metric spaces.

Corollary 22.3.0.9. X is connected.

Proof. Let Q µ X be open and closed. Let us suppose Q is not empty. We
are finished if we can show Q = X.

Because Q is non-empty, it contains some element x.
Let us suppose x œ A. Then Q fl A is non-empty; but because Q is both

open and closed (in X), we conclude that QflA is both open in closed (in A).
Because A ≥= R, A is connected; because Q fl A is non-empty, we conclude
that Q fl A = A. In other words, Q contains A. By Lemma 22.3.0.7, Q fl B
is hence non-empty. But then Q fl B is a non-empty subset of B which is
both open and closed; because B is connected (being homeomorphic to R),
we conclude that Q fl B = B. But

X = A fi B
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so we conclude (using Q fl A = A and Q fl B = B with Q µ X) that X = Q.
On the other hand, if x œ B, we again see that Q fl B = B by connected-

ness of B. By Lemma 22.3.0.8 we conclude Q fl A ”= ÿ, and thus Q fl A = A
by connectedness of A. Hence X = Q.

Now, to prove the theorem, it remains for us to prove that X is not
path-connected. To that end, let us prove the following:

Lemma 22.3.0.10. Let [t0, t1] be a closed interval. Then there does not
exist a continuous function

f : [t0, t1] æ R2

such that f(t0) œ A and f((t0, t1]) µ B.

Proof. We’ll give a proof by contradiction, utilizing the “convergent sequence”
criterion for continuity. (A continuous function preserves convergent se-
quences.)

Suppose a continuous f exists. Consider the composition

[t0, t1]
f≠æ R2 fi1:(x1,x2) ‘æx1≠≠≠≠≠≠≠≠æ R

where the last arrow projects to the first coordinate. This composition is
continuous (because both the above arrows are continuous).

Let us choose two sequences of real numbers. First, we choose a decreasing
sequence

s1, s2, . . . , si œ [t0, t1]

such that lim si æ t0, and so that sin(1/f(si)) is constant.
(This can be constructed as follows: One first chooses an arbitrary s1 œ

(t0, t1] (in particular, s1 ”= t0). By assumption, fi1(f(s1)) > 0. If we have
chosen si, by the continuity of f , we can find some

si+1

so that

1. si+1 œ (t0, (si ≠ t0)/2], and

2. sin(1/f(si+1)) = sin(1/f(si)).
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By the first condition, the sequence si is decreasing and converges to t0. The
second condition ensures that the value sin(1/f(si) is constant with respect
to i.)

We choose our second sequence

sÕ
1, sÕ

2, . . . , sÕ
i œ [t0, t1]

again so the sequence is decreasing, so that lim sÕ
i æ t0, and so that sin(1/f(sÕ

i))
is constant, but with the requirement that

sin(1/f(si)) ”= sin(1/f(sÕ
i)).

(This inequality can be achieved simply by a prudent choice of sÕ
1; we are

using here that fi2 ¶ f is non-constant.)
But the composition

[t0, t1]
f≠æ R2 fi2:(x1,x2) ‘æx2≠≠≠≠≠≠≠≠æ R

(where we now project to the second coordinate) is also continuous. Thus,
we must have that

sin(1/s1) = lim fi2 ¶ f(si) = fi2 ¶ f lim si = fi2 ¶ f(t0)

(where the middle equality uses the continuity of fi2 ¶ f) and, at the same
time,

sin(1/sÕ
1) = lim fi2 ¶ f(sÕ

i) = fi2 ¶ f lim sÕ
i = fi2 ¶ f(t0).

We arrive at a contradiction because sin(1/s1) ”= sin(1/sÕ
1).

Lemma 22.3.0.11. Let a œ A and b œ B. There is no continuous path in
X from a to b.

Proof. Let “ : [0, 1] æ X be continuous. Then “≠1(A) µ [0, 1] is a closed
subset. (This is because A µ X is closed—to see this, note that A µ R2 is
closed.) On the other hand, “≠1(A) ”= [0, 1] because “(1) = b ”œ A.

So let t0 = max “≠1(A) be the largest real number t œ [0, 1] for which
“(t) œ A. Then the composition

f : [t0, 1] æ [0, 1] “≠ææ B fi {“(t)}

would be a continuous function contradicting the conclusion of Lemma 22.3.0.10.
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Now we can finally prove the theorem:

Proof of Theorem 22.3.0.4. We know that X is not path-connected by Lemma 22.3.0.11.
So it su�ces to show that X is connected. This is the content of Corol-
lary 22.3.0.9.

22.4 Lessons learned
This lecture contained a lot of new mathematics. The reason we went in-
depth was the following: I wanted to show you that a space can be connected,
but not path-connected. The proofs above show that the “topologist’s sine
curve” is exactly such a space.

But there are other results we can glean from above.

Proposition 22.4.0.1. There exist topological spaces Y and continuous
functions

f : (0, 1] æ Y

such that f does not extend to a continuous function on [0, 1]. that is, one
can choose f and Y so that there does not exist a function

“ : [0, 1] æ Y

for which “(t) = f(t) for all t œ (0, 1].
Indeed, even if we demand that Y = R2 and that f has bounded image,

it is not always true that f extends to [0, 1].

Proof. Let Y = R2. Take f to be the function

f(t) = (t, sin(1/t)).

We saw that f does not extend continuously to a function f : [0, 1] æ R2.
As for the second part of the proposition, notice that the image of f

is indeed bounded—for example, the image is contained in the rectangle
[0, 1] ◊ [≠1, 1] µ R2, which is in turn contained in a ball of radius 3 centered
at the origin.

Remark 22.4.0.2. Another lesson learned is that the di�erence between
“connected” and “path-connected” isn’t too pathological.
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(“Pathological” is a term that mathematicians use to pass judgement on
particular examples. A less judgmental, but equivalent, way to describe a
“pathological example:” A pathological examples is one that betrays your
early intuitions, and moreover, one having properties that we either rarely
encounter, or want to avoid to make proving results easier.)

Note that the topologist’s sine curve is Hausdro�—in fact, it’s even a
metric space (being a subspace of R2). These are the kinds of spaces that we
thought we would feel somewhat comfortable with.

It depends on your tastes whether you want to interpret this example as
saying ‘’Subspaces of R2 can be kind of crazy,” or as saying “We should get
used to certain phenomena because they will show up whether we expect
them or not.”


