
Lecture 23

Closures and interiors

Fix X a topological space. As you know, given a collection {U–}–œA of open
subsets of X, the union €

–œA

U–

is an open subset of X. Likewise, given a collection {K—}—œB of closed subsets
of X, the intersection ‹

—œB

K—

is a closed subset of X.
Because of these properties, if we fix some subset B µ X, it makes sense

to speak of the “large open subset of X contained in B” and “the smallest
closed subset of X containing B.” These descriptions are informal; we’ll
make them precise shortly. They characterize the interior and closure of B,
respectively.

These constructions (interiors and closures) are useful, and they’re also
fun and interesting. Fix some subset B µ R2. It’s not a bad use of one’s day
to figure out what the interior and closure of B are.

23.1 Closed subsets of metric spaces
Before we go on, let me prove the following:

Proposition 23.1.1. Let X be a metric space and fix a subset A µ X.
Then the following are equivalent
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1. A is closed.

2. For every convergent sequence x1, . . . such that xi œ A for every i, then
the limit of the sequence is also in A.

Proof. You are proving (1) =∆ (2) in your homework. So here we’ll prove
the converse.

We’ll prove (2) =∆ (1) by proving the contrapositive. So suppose that
A is not closed. Then AC is not open; so fix y ”œ A such that for every r > 0,
Ball(y, r) ”µ AC . (At least one such y is guaranteed to exist if AC is not
open.)

Now fix a decreasing sequence of positive real numbers r1, r2, . . . converg-
ing to 0.1 For every ri, there exists some xi œ AflBall(y, ri). By construction,
x1, x2, . . . is a sequence in A whose limit is y. This proves the contraposi-
tive.

23.2 Closure

Definition 23.2.1. Fix a topological space X and let B µ X be a subset.2
Let

K

be the collection of all closed subsets of X containing B.3 Then the closure
of B is defined to be

B :=
‹

KœK

K.

In words, the closure of B is the set obtained by intersecting every closed
subset containing B.

Remark 23.2.2. Note that B is always a subset of B.

Remark 23.2.3. Note that B is a closed subset of X. This is because the
intersection of closed subsets is always closed.

1
For example, ri = 1/i.

2
It could be any kind of subset: open, closed, neither!

3
Note that X is an element of K.
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Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

Remark 23.2.4. If B µ X is closed, then B = B. To see this, note that B
is an element of K because B is closed. Hence

‹

KœK

K = B fl
Q

a
‹

KœK,K ”=B

K

R

b .

But this righthand side is a subset of B because it is obtained by intersecting
B with some other set. In particular,

B µ B.

Because B µ B (for any kind of B), we conclude that B = B.

Example 23.2.5. If B = ÿ, then B = ÿ. If B = X, then B = X.

Exercise 23.2.6. Let X = Rn (with the standard topology). Let B =
Ball(0, r) be the open ball of radius r. Show that the closure of B is the
closed ball of radius r; that is,

B = {x œ Rn such that d(x, 0) Æ r .}

Proof. You are showing in your homework that if K µ X is closed and if
x1, . . . is a sequence in K converging to some x œ X, then x is in fact an
element of K.

Choose a point x of distance r from the origin. And choose also an
increasing sequence of positive real numbers t1, t2, . . . converging to 1.4 Then
the sequence

xi = tix

4
For example, you could take ti = i/(i + 1).
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is a sequence in B converging to x. If K ∏ B, then the xi define a sequence
in K; moreover, if K is closed, the limit x is in K. Thus x œ K for any
closed subset containing B. In particular, x is in the intersection of all such
K. Thus x œ B. This shows that the closed ball of radius r is contained in
B.

On the other hand, consider the function f : Rn æ R given by d(0, ≠);
that is, the “distance to the origin” function. We see that f≠1([0, r]) is equal
to the closed ball of radius r—in particular, this closed ball is a closed subset
of Rn, and it obviously contains Ball(0, r). This shows that B is a subset of
the closed ball of radius r (because B can be expressed as the intersection of
this closed ball with other sets). We are finished.

Exercise 23.2.7. Suppose f : X æ Y is a continuous function, and let
B µ X be a subset. Show that

f(B) µ f(B).

In English: The image of the closure of B is contained in the closure of the
image of B.

Proof. Let C be the collection of closed subsets of Y containing f(B). Then

f≠1(f(B)) = f≠1

Q

a
‹

CœC

C

R

b

by definition of closure. We further have:

f≠1

Q

a
‹

CœC

C

R

b =
‹

CœC

f≠1(C).

Now, because f is continuous, we know that f≠1(C) is closed for every C œ C.
Moreover, because f(B) µ C, we see that B µ f≠1(C). We conclude that
for every C œ C, f≠1(C) œ K. Thus

‹

KœK

K µ
‹

CœC

f≠1(C).

The lefthand side is the definition of B. The righthand side is f≠1(f(B)).
We are finished.
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Remark 23.2.8. It is not always true that f(B) is equal to f(B). For ex-
ample, let B = X = Ball(0, r), and let f : X æ R2 be the inclusion. Then
f(B) = X, while f(B) is the closed ball of radius r.

Exercise 23.2.9. Find an example of a continuous function p : Rn æ R
such that

{x such that p(x) < t},

does not equal
{x such that p(x) Æ t}.

Example 23.2.10. Let B µ R2 be the following subset:

B = {(x1, x2) such that x1 > 0 and x2 = sin(1/x1)} µ R2.

This is not a closed subset of R2. I claim

B = B
€

{(x1, x2) such that x1 = 0 and x2 œ [≠1, 1]}.

That is, B is equal to the topologist’s sine curve from last class.
Let us call the righthand side S for the time being. First, I claim that

S µ B. Indeed, fix some point (0, T ) œ S \ B. Then there is an unbounded,
increasing sequence of real numbers t1, t2, . . . for which sin(ti) = T ; let si =
1/ti. Then the sequence of points

xi = (si, sin(1/si)) = (si, T )

converges to (0, T ), while each xi is an element of B. In particular, (0, T ) is
contained in any closed subset containing B. This shows S µ B.

To complete the proof, it su�ces to show that S is closed. For this,
because R2 is a metric space, it su�ces to show that any convergent sequence
contained in S has a limit contained in S. So let x1, x2, . . . be a sequence in
S.

Suppose that the limit x œ R2 has the property that the 1st coordinate is
non-zero. There is a unique point in S with a given non-zero first coordinate
t, namely (t, sin(1/t)). Moreover, because the function t ‘æ sin(t/1) is con-
tinuous, if ti = fi1(xi) converges to t, we know that (ti, sin(1/ti)) converges
to (t, sin(1/t)). So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us ex-
amine the second coordinates fi2(x1), . . .. By continuity of fi2, the sequence
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fi2(x1), fi2(x2), . . . converges to some T ; because each xi has a second coor-
dinate in [≠1, 1], and because [≠1, 1] µ RR is closed, we conclude that the
limit T is also contained in [≠1, 1]. Hence the limit of the sequence x1, . . . ,
is the point (0, T ), and (0, T ) œ S.

Because any sequence in S with a limit in R2 has limit in S, S is closed.

23.3 Interiors
Definition 23.3.1. Let X be a topological space and fix B µ X. Let U
denote the collection of pen subsets of X that are contained in B. Then the
interior of B is defined to be the union

int(B) =
€

UœU

U.

Remark 23.3.2. For any B, we have that int(B) µ B. Moreover, int(B) is
an open subset of both B and of X.

Remark 23.3.3. If B is open, then int(B) = B. This is because B œ U, so

int(B) =
€

UœU

U = B fi
Q

a
€

U ”=B,UœU

U

R

b

meaning int(B) contains B (because int(B) is a union of B with possibly
other sets). Thus we have that int(B) µ B µ int(B), meaning int(B) = B.

Example 23.3.4. We have that int(ÿ) = ÿ and int(X) = X.

Example 23.3.5. Let X = Rn and let B be the closed ball of radius r. Then
int(B) = Ball(0, r) is the open ball of radius r.

To see this, we note that Ball(0, r) is open and contained in B, so
Ball(0, r) µ int(B) by definition of interior. Because int(B) µ B, it suf-
fices to show that no other point of B (i.e., no point in B \ Ball(0, r)) is
contained in the interior of B.

So fix y œ B \ Ball(0, r), meaning y is a point of exactly distance r away
from the origin. It su�ces to show that there is no open ball containing y
and contained in B; for then there is no U œ U for which y œ U .

Well, for any ” > 0, Ball(y, ”) µ R2 contains some point of distance > r
from the origin. So Ball(y, ”) is never contained in B. This completes the
proof.


