Lecture 23

Closures and interiors

Fix X a topological space. As you know, given a collection {U, }aea of open
subsets of X, the union
U U

acA

is an open subset of X. Likewise, given a collection { K3} ges of closed subsets
of X, the intersection
[ Ks

BeB

is a closed subset of X.

Because of these properties, if we fix some subset B C X, it makes sense
to speak of the “large open subset of X contained in B” and “the smallest
closed subset of X containing B.” These descriptions are informal; we’ll
make them precise shortly. They characterize the interior and closure of B,
respectively.

These constructions (interiors and closures) are useful, and they’re also
fun and interesting. Fix some subset B C R2. It’s not a bad use of one’s day
to figure out what the interior and closure of B are.

23.1 Closed subsets of metric spaces

Before we go on, let me prove the following:

Proposition 23.1.1. Let X be a metric space and fix a subset A C X.
Then the following are equivalent
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1. A is closed.

2. For every convergent sequence x1, ... such that z; € A for every i, then
the limit of the sequence is also in A.

Proof. You are proving (1) = (2) in your homework. So here we’ll prove
the converse.

We'll prove (2) = (1) by proving the contrapositive. So suppose that
A is not closed. Then A® is not open; so fix y € A such that for every r > 0,
Ball(y,r) ¢ A°. (At least one such y is guaranteed to exist if A® is not
open.)

Now fix a decreasing sequence of positive real numbers rq, s, ... converg-
ing to 0.} For every r;, there exists some x; € ANBall(y, ;). By construction,
x1,T9,... 1s a sequence in A whose limit is y. This proves the contraposi-
tive. [

23.2 Closure

Definition 23.2.1. Fix a topological space X and let B C X be a subset.?
Let

K

be the collection of all closed subsets of X containing B.?> Then the closure
of B is defined to be

B = ﬂ K.

KeX

In words, the closure of B is the set obtained by intersecting every closed
subset containing B.

Remark 23.2.2. Note that B is always a subset of B.

Remark 23.2.3. Note that B is a closed subset of X. This is because the
intersection of closed subsets is always closed.

For example, r; = 1/i.
2Tt could be any kind of subset: open, closed, neither!
3Note that X is an element of X.



23.2. CLOSURE 3

Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

Remark 23.2.4. If B C X is closed, then B = B. To see this, note that B
is an element of K because B is closed. Hence

ﬂK:Bm( N K).

KeX KeX,K#B

But this righthand side is a subset of B because it is obtained by intersecting
B with some other set. In particular,

B C B.

Because B C B (for any kind of B), we conclude that B = B.
Example 23.2.5. If B =), then B=(. If B= X, then B = X.

Exercise 23.2.6. Let X = R" (with the standard topology). Let B =
Ball(0,7) be the open ball of radius r. Show that the closure of B is the
closed ball of radius r; that is,

B = {z € R" such that d(z,0) <r .}

Proof. You are showing in your homework that if K C X is closed and if
x1,... 18 a sequence in K converging to some x € X, then x is in fact an
element of K.

Choose a point z of distance r from the origin. And choose also an
increasing sequence of positive real numbers t,t, ... converging to 1.* Then
the sequence

4For example, you could take t; = i/(i + 1).
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is a sequence in B converging to x. If K D B, then the z; define a sequence
in K; moreover, if K is closed, the limit z is in K. Thus x € K for any
closed subset containing B. In particular, z is in the intersection of all such
K. Thus x € B. This shows that the closed ball of radius 7 is contained in
B.

On the other hand, consider the function f : R" — R given by d(0, —);
that is, the “distance to the origin” function. We see that f~!([0,7]) is equal
to the closed ball of radius r—in particular, this closed ball is a closed subset
of R™, and it obviously contains Ball(0,r). This shows that B is a subset of
the closed ball of radius r (because B can be expressed as the intersection of
this closed ball with other sets). We are finished. [

Exercise 23.2.7. Suppose f : X — Y is a continuous function, and let
B C X be a subset. Show that

f(B) C f(B).

In English: The image of the closure of B is contained in the closure of the
image of B.

Proof. Let € be the collection of closed subsets of Y containing f(B). Then

fAB) = £ (ﬂ C)

cee
by definition of closure. We further have:

r(ne)-nre

cec ceC

Now, because f is continuous, we know that f~1(C) is closed for every C' € €.
Moreover, because f(B) C C, we see that B C f~1(C). We conclude that
for every C € €, f~1(C) € K. Thus

N Kc o)

KeX Ccec

The lefthand side is the definition of B. The righthand side is f~'(f(B)).
We are finished. O
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Remark 23.2.8. It is not always true that f(B) is equal to f(B). For ex-
ample, let B = X = Ball(0,r), and let f : X — R? be the inclusion. Then

f(B) = X, while f(B) is the closed ball of radius r.

Exercise 23.2.9. Find an example of a continuous function p : R* — R
such that

{z such that p(x) < t},

does not equal
{x such that p(x) < t}.

Example 23.2.10. Let B C R? be the following subset:
B = {(z1,25) such that z; > 0 and x, = sin(1/x;)} C R*.
This is not a closed subset of R?. T claim
B = B| J{(21, z2) such that z; = 0 and 2, € [-1,1]}.

That is, B is equal to the topologist’s sine curve from last class.

Let us call the righthand side S for the time being. First, I claim that
S C B. Indeed, fix some point (0,7) € S\ B. Then there is an unbounded,
increasing sequence of real numbers t;, to, ... for which sin(t;) = T'; let s; =
1/t;. Then the sequence of points

x; = (s;,8in(1/s;)) = (84, T)

converges to (0,7, while each z; is an element of B. In particular, (0,7 is
contained in any closed subset containing B. This shows S C B.

To complete the proof, it suffices to show that S is closed. For this,
because R? is a metric space, it suffices to show that any convergent sequence
contained in S has a limit contained in S. So let x1, x5, ... be a sequence in
S.

Suppose that the limit € R? has the property that the 1st coordinate is
non-zero. There is a unique point in S with a given non-zero first coordinate
t, namely (t,sin(1/t)). Moreover, because the function ¢ — sin(¢/1) is con-
tinuous, if t; = m(x;) converges to t, we know that (¢;,sin(1/t;)) converges
to (t,sin(1/t)). So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us ex-
amine the second coordinates my(x1),.... By continuity of m, the sequence
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mo(x1), mo(22), . .. converges to some T'; because each z; has a second coor-
dinate in [—1, 1], and because [—1,1] C RR is closed, we conclude that the
limit 7" is also contained in [—1, 1]. Hence the limit of the sequence z, ...,
is the point (0,7), and (0,7) € S.

Because any sequence in S with a limit in R? has limit in S, S is closed.

23.3 Interiors

Definition 23.3.1. Let X be a topological space and fix B C X. Let U
denote the collection of pen subsets of X that are contained in B. Then the
interior of B is defined to be the union

int(B) = |J U.
Ueu
Remark 23.3.2. For any B, we have that int(B) C B. Moreover, int(B) is
an open subset of both B and of X.

Remark 23.3.3. If B is open, then int(B) = B. This is because B € U, so

int(B) = | U:BU< U U)

Ueu U£B,Ucl

meaning int(B) contains B (because int(B) is a union of B with possibly
other sets). Thus we have that int(B) C B C int(B), meaning int(B) = B.

Example 23.3.4. We have that int(0) = () and int(X) = X.

Example 23.3.5. Let X = R" and let B be the closed ball of radius . Then
int(B) = Ball(0,7) is the open ball of radius .

To see this, we note that Ball(0,r) is open and contained in B, so
Ball(0,7) C int(B) by definition of interior. Because int(B) C B, it suf-
fices to show that no other point of B (i.e., no point in B \ Ball(0,7)) is
contained in the interior of B.

So fix y € B\ Ball(0,7), meaning y is a point of exactly distance r away
from the origin. It suffices to show that there is no open ball containing y
and contained in B; for then there is no U € U for which y € U.

Well, for any § > 0, Ball(y,d) C R? contains some point of distance > r
from the origin. So Ball(y,d) is never contained in B. This completes the
proof.



