Lecture 23

Closures and interiors

Fix X a topological space. As you know, given a collection $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ of open subsets of X, the union

$$
\bigcup_{\alpha \in \mathcal{A}} U_{\alpha}
$$

is an open subset of X. Likewise, given a collection $\left\{K_{\beta}\right\}_{\beta \in \mathcal{B}}$ of closed subsets of X, the intersection

$$
\bigcap_{\beta \in \mathcal{B}} K_{\beta}
$$

is a closed subset of X.
Because of these properties, if we fix some subset $B \subset X$, it makes sense to speak of the "large open subset of X contained in B " and "the smallest closed subset of X containing B." These descriptions are informal; we'll make them precise shortly. They characterize the interior and closure of B, respectively.

These constructions (interiors and closures) are useful, and they're also fun and interesting. Fix some subset $B \subset \mathbb{R}^{2}$. It's not a bad use of one's day to figure out what the interior and closure of B are.

23.1 Closed subsets of metric spaces

Before we go on, let me prove the following:
Proposition 23.1.1. Let X be a metric space and fix a subset $A \subset X$. Then the following are equivalent

1. A is closed.
2. For every convergent sequence x_{1}, \ldots such that $x_{i} \in A$ for every i, then the limit of the sequence is also in A.

Proof. You are proving $(1) \Longrightarrow(2)$ in your homework. So here we'll prove the converse.

We'll prove $(2) \Longrightarrow$ (1) by proving the contrapositive. So suppose that A is not closed. Then A^{C} is not open; so fix $y \notin A$ such that for every $r>0$, $\operatorname{Ball}(y, r) \not \subset A^{C}$. (At least one such y is guaranteed to exist if A^{C} is not open.)

Now fix a decreasing sequence of positive real numbers r_{1}, r_{2}, \ldots converging to $0 .{ }^{1}$ For every r_{i}, there exists some $x_{i} \in A \cap \operatorname{Ball}\left(y, r_{i}\right)$. By construction, x_{1}, x_{2}, \ldots is a sequence in A whose limit is y. This proves the contrapositive.

23.2 Closure

Definition 23.2.1. Fix a topological space X and let $B \subset X$ be a subset. ${ }^{2}$ Let

$$
\mathcal{K}
$$

be the collection of all closed subsets of X containing $B .{ }^{3}$ Then the closure of B is defined to be

$$
\bar{B}:=\bigcap_{K \in \mathcal{K}} K .
$$

In words, the closure of B is the set obtained by intersecting every closed subset containing B.

Remark 23.2.2. Note that B is always a subset of \bar{B}.
Remark 23.2.3. Note that \bar{B} is a closed subset of X. This is because the intersection of closed subsets is always closed.

[^0]

Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

Remark 23.2.4. If $B \subset X$ is closed, then $\bar{B}=B$. To see this, note that B is an element of \mathcal{K} because B is closed. Hence

$$
\bigcap_{K \in \mathcal{K}} K=B \cap\left(\bigcap_{K \in \mathcal{X}, K \neq B} K\right)
$$

But this righthand side is a subset of B because it is obtained by intersecting B with some other set. In particular,

$$
\bar{B} \subset B .
$$

Because $B \subset \bar{B}$ (for any kind of B), we conclude that $B=\bar{B}$.
Example 23.2.5. If $B=\emptyset$, then $\bar{B}=\emptyset$. If $B=X$, then $\bar{B}=X$.
Exercise 23.2.6. Let $X=\mathbb{R}^{n}$ (with the standard topology). Let $B=$ $\operatorname{Ball}(0, r)$ be the open ball of radius r. Show that the closure of B is the closed ball of radius r; that is,

$$
\bar{B}=\left\{x \in \mathbb{R}^{n} \text { such that } d(x, 0) \leq r .\right\}
$$

Proof. You are showing in your homework that if $K \subset X$ is closed and if x_{1}, \ldots is a sequence in K converging to some $x \in X$, then x is in fact an element of K.

Choose a point x of distance r from the origin. And choose also an increasing sequence of positive real numbers t_{1}, t_{2}, \ldots converging to $1 .{ }^{4}$ Then the sequence

$$
x_{i}=t_{i} x
$$

[^1]is a sequence in B converging to x. If $K \supset B$, then the x_{i} define a sequence in K; moreover, if K is closed, the limit x is in K. Thus $x \in K$ for any closed subset containing B. In particular, x is in the intersection of all such K. Thus $x \in \bar{B}$. This shows that the closed ball of radius r is contained in \bar{B}.

On the other hand, consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $d(0,-)$; that is, the "distance to the origin" function. We see that $f^{-1}([0, r])$ is equal to the closed ball of radius r - in particular, this closed ball is a closed subset of \mathbb{R}^{n}, and it obviously contains $\operatorname{Ball}(0, r)$. This shows that \bar{B} is a subset of the closed ball of radius r (because \bar{B} can be expressed as the intersection of this closed ball with other sets). We are finished.

Exercise 23.2.7. Suppose $f: X \rightarrow Y$ is a continuous function, and let $B \subset X$ be a subset. Show that

$$
f(\bar{B}) \subset \overline{f(B)}
$$

In English: The image of the closure of B is contained in the closure of the image of B.

Proof. Let \mathcal{C} be the collection of closed subsets of Y containing $f(B)$. Then

$$
f^{-1}(\overline{f(B)})=f^{-1}\left(\bigcap_{C \in \mathcal{C}} C\right)
$$

by definition of closure. We further have:

$$
f^{-1}\left(\bigcap_{C \in \mathbb{C}} C\right)=\bigcap_{C \in \mathbb{C}} f^{-1}(C)
$$

Now, because f is continuous, we know that $f^{-1}(C)$ is closed for every $C \in \mathcal{C}$. Moreover, because $f(B) \subset C$, we see that $B \subset f^{-1}(C)$. We conclude that for every $C \in \mathcal{C}, f^{-1}(C) \in \mathcal{K}$. Thus

$$
\bigcap_{K \in \mathcal{K}} K \subset \bigcap_{C \in \mathcal{C}} f^{-1}(C)
$$

The lefthand side is the definition of \bar{B}. The righthand side is $f^{-1}(\overline{f(B)})$. We are finished.

Remark 23.2.8. It is not always true that $f(\bar{B})$ is equal to $\overline{f(B)}$. For example, let $B=X=\operatorname{Ball}(0, r)$, and let $f: X \rightarrow \mathbb{R}^{2}$ be the inclusion. Then $f(\bar{B})=X$, while $\overline{f(B)}$ is the closed ball of radius r.

Exercise 23.2.9. Find an example of a continuous function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\overline{\{x \text { such that } p(x)<t\}}
$$

does not equal

$$
\{x \text { such that } p(x) \leq t\} .
$$

Example 23.2.10. Let $B \subset \mathbb{R}^{2}$ be the following subset:

$$
B=\left\{\left(x_{1}, x_{2}\right) \text { such that } x_{1}>0 \text { and } x_{2}=\sin \left(1 / x_{1}\right)\right\} \subset \mathbb{R}^{2} .
$$

This is not a closed subset of \mathbb{R}^{2}. I claim

$$
\bar{B}=B \bigcup\left\{\left(x_{1}, x_{2}\right) \text { such that } x_{1}=0 \text { and } x_{2} \in[-1,1]\right\} .
$$

That is, \bar{B} is equal to the topologist's sine curve from last class.
Let us call the righthand side S for the time being. First, I claim that $S \subset \bar{B}$. Indeed, fix some point $(0, T) \in S \backslash B$. Then there is an unbounded, increasing sequence of real numbers t_{1}, t_{2}, \ldots for which $\sin \left(t_{i}\right)=T$; let $s_{i}=$ $1 / t_{i}$. Then the sequence of points

$$
x_{i}=\left(s_{i}, \sin \left(1 / s_{i}\right)\right)=\left(s_{i}, T\right)
$$

converges to $(0, T)$, while each x_{i} is an element of B. In particular, $(0, T)$ is contained in any closed subset containing B. This shows $S \subset \bar{B}$.

To complete the proof, it suffices to show that S is closed. For this, because \mathbb{R}^{2} is a metric space, it suffices to show that any convergent sequence contained in S has a limit contained in S. So let x_{1}, x_{2}, \ldots be a sequence in S.

Suppose that the limit $x \in \mathbb{R}^{2}$ has the property that the 1st coordinate is non-zero. There is a unique point in S with a given non-zero first coordinate t, namely $(t, \sin (1 / t))$. Moreover, because the function $t \mapsto \sin (t / 1)$ is continuous, if $t_{i}=\pi_{1}\left(x_{i}\right)$ converges to t, we know that $\left(t_{i}, \sin \left(1 / t_{i}\right)\right)$ converges to $(t, \sin (1 / t))$. So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us examine the second coordinates $\pi_{2}\left(x_{1}\right), \ldots$. By continuity of π_{2}, the sequence
$\pi_{2}\left(x_{1}\right), \pi_{2}\left(x_{2}\right), \ldots$ converges to some T; because each x_{i} has a second coordinate in $[-1,1]$, and because $[-1,1] \subset R R$ is closed, we conclude that the limit T is also contained in $[-1,1]$. Hence the limit of the sequence x_{1}, \ldots, is the point $(0, T)$, and $(0, T) \in S$.

Because any sequence in S with a limit in \mathbb{R}^{2} has limit in S, S is closed.

23.3 Interiors

Definition 23.3.1. Let X be a topological space and fix $B \subset X$. Let \mathcal{U} denote the collection of pen subsets of X that are contained in B. Then the interior of B is defined to be the union

$$
\operatorname{int}(B)=\bigcup_{U \in \mathcal{U}} U
$$

Remark 23.3.2. For any B, we have that $\operatorname{int}(B) \subset B$. Moreover, $\operatorname{int}(B)$ is an open subset of both B and of X.

Remark 23.3.3. If B is open, then $\operatorname{int}(B)=B$. This is because $B \in \mathcal{U}$, so

$$
\operatorname{int}(B)=\bigcup_{U \in \mathcal{U}} U=B \cup\left(\bigcup_{U \neq B, U \in \mathcal{U}} U\right)
$$

meaning $\operatorname{int}(B)$ contains B (because $\operatorname{int}(B)$ is a union of B with possibly other sets). Thus we have that $\operatorname{int}(B) \subset B \subset \operatorname{int}(B)$, meaning $\operatorname{int}(B)=B$.

Example 23.3.4. We have that $\operatorname{int}(\emptyset)=\emptyset$ and $\operatorname{int}(X)=X$.
Example 23.3.5. Let $X=\mathbb{R}^{n}$ and let B be the closed ball of radius r. Then $\operatorname{int}(B)=\operatorname{Ball}(0, r)$ is the open ball of radius r.

To see this, we note that $\operatorname{Ball}(0, r)$ is open and contained in B, so $\operatorname{Ball}(0, r) \subset \operatorname{int}(B)$ by definition of interior. Because $\operatorname{int}(B) \subset B$, it suffices to show that no other point of B (i.e., no point in $B \backslash \operatorname{Ball}(0, r))$ is contained in the interior of B.

So fix $y \in B \backslash \operatorname{Ball}(0, r)$, meaning y is a point of exactly distance r away from the origin. It suffices to show that there is no open ball containing y and contained in B; for then there is no $U \in \mathcal{U}$ for which $y \in U$.

Well, for any $\delta>0, \operatorname{Ball}(y, \delta) \subset \mathbb{R}^{2}$ contains some point of distance $>r$ from the origin. So $\operatorname{Ball}(y, \delta)$ is never contained in B. This completes the proof.

[^0]: ${ }^{1}$ For example, $r_{i}=1 / i$.
 ${ }^{2}$ It could be any kind of subset: open, closed, neither!
 ${ }^{3}$ Note that X is an element of \mathcal{K}.

[^1]: ${ }^{4}$ For example, you could take $t_{i}=i /(i+1)$.

