Lecture 24

One-point compactification

Today you have a guest instructor. Get into your groups (you know the drill) and tackle the proofs of the propositions below.

Do not spent more than 15 minutes on proving a given proposition. Move on!

Definition 24.0.1. Let X be a topological space. We are now going to create a new topological space X^{+}.

As a set, $X^{+}=X \amalg\{*\}$. In other words, X^{+}is the set obtained by adjoining a single point called $*$ to X.

The topology $\mathcal{T}_{X^{+}}$is defined as follows: $U \subset X^{+}$is open if either

1. $* \notin U$ and U is open in X, or
2. $* \in U$ and $U \cap X$ is the complement of a closed, compact subspace of X.

We call X^{+}the one-point compactification of X.
Remark 24.0.2. Note that if X is Hausdorff, we may remove the adjective "closed" from the second condition above.

24.1 Basic properties

Prove the following:
Proposition 24.1.1. $\mathcal{T}_{X^{+}}$is a topology on the set X^{+}.
(Thus, you need to prove that the collection of sets U satisfying 1 . or 2. satisfies all the properties of a topology. You will want to use at some point that the empty set is a compact space.)

Proposition 24.1.2. X^{+}is compact.
(Thus, you need to prove that every open cover of X^{+}admits a finite subcover.)

Remark 24.1.3. This justifies the word "compactification."

24.2 Examples

Prove the following:
Proposition 24.2.1. If X is compact, then X^{+}is homeomorphic to the coproduct $X \amalg\{*\}$ with the coproduct topology.

Proposition 24.2.2. If $X=\mathbb{R}^{n}$, then X^{+}is homeomorphic to S^{n}.
Remark 24.2.3. The proof of Proposition 24.2 .2 is made easier if you know about stereographic projection. This is the function

$$
p: S^{n} \backslash\{(0, \ldots, 0,1)\} \rightarrow \mathbb{R}^{n}, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto \frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)
$$

Here is a description of p in words. For brevity, let us call the point $(0, \ldots, 0,1) \in$ S^{n} the north pole of S^{n}. Given a point $x \in S^{n}$ such that x is not the north pole, p sends x to the intersection of

- the line through x and the north pole, with
- the hyperplane $\left\{x_{n+1}=0\right\}$, which one can identify with \mathbb{R}^{n}.

Proposition 24.2.4. If X and Y are homeomorphic, so are X^{+}and Y^{+}.

