Lecture 25

Density, Interiors

Today you have a guest instructor. Get into your groups (you know the drill) and tackle the proofs of the propositions below.

Do not spent more than 15 minutes on proving a given proposition. Move on!

25.1 Density

Definition 25.1.1. Let X be a topological space and fix a subset $B \subset X$. We say that B is dense in X if $\bar{B}=X$.

Prove the following:
Proposition 25.1.2. Fix $B \subset X$. The following are equivalent:

1. G is dense in X.
2. For every open $U \subset X, U \cap B \neq \emptyset$.
3. For every $x \in X$, there is some neighborhood A of x in X such that $A \cap B \neq \emptyset$.
4. For every $x \in X$, there is some open neighborhood U of x in X such that $U \cap B \neq \emptyset$.

Proposition 25.1.3. $\mathbb{Q} \subset \mathbb{R}$ is dense.
Proposition 25.1.4. $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.

Exercise 25.1.5. For each of the following examples of subsets of \mathbb{R}^{2}, identify the closure, the interior, and the boundary. Which of these is dense?

1. $B=\left\{\left(x_{1}, x_{2}\right)\right.$ such that $\left.x_{1} \neq 0\right\}$.
2. $B=\bigcup_{(a, b) \in \mathbb{Z} \times \mathbb{Z}}(a-1, a+1) \times(b-1, b+1)$.
3. $B=\left\{\left(x_{1}, x_{2}\right)\right.$ such that at least one of the coordinates is rational $\}$.

25.2 Interiors

Definition 25.2.1. Let X be a topological space and fix $B \subset X$. Let \mathcal{U} denote the collection of pen subsets of X that are contained in B. Then the interior of B is defined to be the union

$$
\operatorname{int}(B)=\bigcup_{U \in \mathcal{U}} U
$$

Prove the following:
Proposition 25.2.2. For any B, we have that $\operatorname{int}(B) \subset B$. Moreover, $\operatorname{int}(B)$ is an open subset of both B and of X.

Proposition 25.2.3. $B \subset X$ is open if and only if $\operatorname{int}(B)=B$.
Example 25.2.4. We have that $\operatorname{int}(\emptyset)=\emptyset$ and $\operatorname{int}(X)=X$.
Example 25.2.5. Let $X=\mathbb{R}^{n}$ and let B be the closed ball of radius r. Then $\operatorname{int}(B)$ is the open ball of radius r.

To see this, we note that $\operatorname{Ball}(0, r)$ is open and contained in B, so $\operatorname{Ball}(0, r) \subset \operatorname{int}(B)$ by definition of interior. Because $\operatorname{int}(B) \subset B$, it suffices to show that no other point of B (i.e., no point in $B \backslash \operatorname{Ball}(0, r))$ is contained in the interior of B.

So fix $y \in B \backslash \operatorname{Ball}(0, r)$, meaning y is a point of exactly distance r away from the origin. It suffices to show that there is no open ball containing y and contained in B; for then there is no $U \in \mathcal{U}$ for which $y \in U$.

Well, for any $\delta>0, \operatorname{Ball}(y, \delta) \subset \mathbb{R}^{2}$ contains some point of distance $>r$ from the origin. So $\operatorname{Ball}(y, \delta)$ is never contained in B. This completes the proof.

