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Introduction

Welcome to class. Here are some details:

1. Me: Hiro

2. You: Taking Math 4330, General topology

3. My e-mail, o�ce hours, o�ce, handing out the syllabus, et cetera.

Now let’s get to the good stu�.

Topology is the study of shapes.

Question 0.0.1. At this point, what questions do you have as a student?

(Here, I field questions. But I move forward with two:)

1. What do you mean by shape?

2. How do you study them?

The purpose of this class is to give you the vocabulary to begin under-
standing the answers to these questions.

Remark 0.0.2. But the vocabulary of mathematics is not like vocabulary
of foreign language; these will not be new words for old ideas; these will be
new words for new ideas.

Remark 0.0.3. Just as it will all take us many years to learn what love is,
just as we will have to update our understanding as time passes, and just as
this conceptualization will only change fruitfully as you invest time in this
idea of love, your idea of the word “space” will also require both the passage
and investment of time to develop. Be patient with yourself.
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0.1 A moment of confusion; our goals
Let me open the floodgates for a moment to lay on you some definitions. You
may see terms you are not familiar with, and what happens in the next five
minutes, you are not responsible for knowing just yet.
Definition 0.1.1. A topological space is the data of a pair

(X,T)

where X is a set, and T is a collection of subsets of X, satisfying the following
conditions:

1. The empty set ÿ and X itself are in T,

2. For any finite collection U1, . . . , Un in T, the intersection U1 fl . . . fl Un

is in T, and

3. For any collection {U–} µ T, the union t
– U– is in T.

Definition 0.1.2. Let (X,T) be a topological space. An element U œ T is
called an open set of X.
Definition 0.1.3. Let (X,T) and (X Õ,TÕ) be two topological spaces. A
function f : X æ X Õ is called continuous if for any open set U Õ œ TÕ, the
preimage f≠1(U Õ) is an open set of X.

That took a few minutes. Believe it or not, if you understand the above
three definitions, you have completed at least half the class.

But you do not understand, at least at this moment. A major goal of this
class will be to understand the above definitions, and as I said, this will take
time. We have the semester for a reason.

Another major goal of this class will be for you to begin thinking the way
mathematicians do. This means to understand how to come to an under-
standing.

0.2 Continuity
So let’s get to it.

Here’s an often unspoken tip about being a mathematician: Oftentimes,
we give definitions of objects, only to be able to understand the functions
between them.
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Example 0.2.1. For now, you can pretend that I only gave the definition of
a topological space so that I can tell you what a continuous function is.

At this point I want you to feel funny: You already know what a contin-
uous function is! (Or you’re supposed to, at least.) Let’s review.

Let us fix a function
f : R æ R.

I will take some time to dissect this notation for you.

1. Here, R is the collection of all real numbers. It is a set. It contains
things like 0, 1, 2, 3, fi, ≠fi, e, 3/4,

Ô
2, and so forth.

2. The colon :, along with the arrow æ, indicates that I am defining a
function. This function has domain R, and target R as well. In plain
English, this means I am defining an assignment which eats a real
number, and spits out a (possibly di�erent) real number. An example
would be something that takes a real number and outputs its square;
this is often referred to as the function f(x) = x2.

3. The letter f indicates the name I want to give to the function. For
example, if I were to write “g : R æ R,” I am merely declaring that
from hereon, I will be talking about a function called g.

4. I used the phrase “let us fix a function f .” This is jargon, the same
way lawyers use legal terms, mathematicians use their own linguistic
conventions. “Let us fix a function” does not mean that we all choose
our favorite function. “Let us fix a function,” in fact, means almost
the opposite—it means that we are about to discuss something that is
true for an arbitrary function. You are allowed to have a function in
mind, but you must also be aware that the devil may be in the room,
and the devil may choose a completely di�erent (and horrible-looking)
function.

Discussion 0.2.2. What does it mean for a function f : R æ R to be
continuous?

(Some discussions will talk about intuitive meanings, which is fine. Some
discussions may be imprecise. Some will get at a definition.)

In this discussion, I expect some ideas to come up. Things like:
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1. The graph of f has no “jumps.”

2. The graph of f is “connected.”

3. The graph of f “divides” the plane into two halves.

4. If a sequence xn converges to x, then the sequence f(xn) converges to
f(x).

5. f satisfies the “epsilon-delta” definition.

My expectation is that almost everybody will have some intuition—some
correct, some incorrect–about what a continuous function is. I suspect only
a few people will have remembered what the definition that you learn in
calculus is:

Definition 0.2.3. A function f : R æ R is called continuous if and only if:

For every x and for every ‘ > 0,
there exists a ” > 0 so that

for every xÕ, we have

|x ≠ xÕ| < ” =∆ |f(x) ≠ f(xÕ)| < ‘.

At this point, you have seen a “definition” of continuity (Definition 0.2.3)
and you have also discussed your intuition of continuous functions. You
should notice that the definition and the intuition may look very di�erent.

So, we have already seen one of the major ideas of modern mathematics,
and of this class: Continuity. We will talk more about this as time goes on,
of course. For next time, all you need to do is explore this idea on your own
terms, and turn in the result.

0.3 Getting to know R
As my preview might have hinted, we need to understand and define what it
means for a function to be continuous even when the domain and codomain
may not be R. To do that, we will now examine what enabled us to define a
notion of continuity for functions from R to R; understanding the ingredients
in our familiar case will allow us to extend our ideas to the unfamiliar cases.
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Remark 0.3.1. You have known R—the set of real numbers—for a long
time. But like a family member you have known a long time, sometimes it
is only with intense reflection that you realize the things you have taken for
granted.

You are, believe it or not, very familiar with R—like family. But what
are we relying on to define continuity?

Discussion 0.3.2. What properties or structures of R are we using in the
epsilon-delta definition of continuity (Definition 0.2.3)?

Some things you may come up with:

1. We know how to “subtract” elements when we write things like x ≠ xÕ

or f(x) ≠ f(xÕ).

2. We know how to take absolute value when we write something like
|x ≠ xÕ| (or |f(x) ≠ f(xÕ)|.

3. We know how to compare |x≠xÕ| with ‘ so we can write something like
‘.

4. In fact, we also have intuition about the first two things Hiro listed:
“subtracting” and “take absolute value” combine to give us a notion of
“distance” between two points—|x ≠ xÕ| is the distance from x to xÕ.

I would now like to focus on this idea of distance. This will lead us to one
of the most intuitive ways to talk about spaces and continuous maps between
them.
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Metric spaces

As I’ve mentioned before, we will be very much interested in notions of
distance. This is because—at least based on our everyday experiences—
whenever we think of a shape or a space, we can certainly measure the
distance between two points on that shape or space. Moreover, we saw
in the previous section that the very definition of continuity (for functions
f : R æ R) utilized the notion of distance.

Remark 0.3.3. Later in our course, we will study shapes where it is unnat-
ural to speak of distances; this may come as a surprise, but more on that
later.

Today, we’ll isolate what properties of “distance” are reasonable to expect
on the kinds of shapes we’re familiar with.

0.4 Preliminaries: Products
First, let me remind you of some background; it’s okay if this is the first time
you’ve seen these background ideas.

Definition 0.4.1. Let X and Y be two sets. Then the notation

X ◊ Y

represents their product; this is also sometimes called the Cartesian product
of X and Y .

X ◊ Y is a set whose elements are ordered pairs

(x, y)

with x œ X and y œ Y .
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Example 0.4.2. Let X be a set of three people named Alejandra, Bill, and
Candace. Let Y be a set of two people named Seungwan and Theo. Then
X ◊ Y has exactly six elements, and they are listed as follows:

• (Alejandra, Seungwan)

• (Bill, Seungwan)

• (Candace, Seungwan)

• (Alejandra, Theo)

• (Bill, Theo)

• (Candace, Theo)

Note that (Theo, Candace) is not an element of X ◊ Y . This is what the
word “ordered” means in “ordered pair.”

Example 0.4.3. X and Y may be the same set. For example, let R be the
set of all real numbers, and set X = Y = R. Then X ◊Y has another names,
called R2.1

We will often denote an element of R2 by (x1, x2).

Example 0.4.4 (Iterated products). You can iterate the product construc-
tion. For example, if you have three sets X and Y and Z, it makes sense to
form the sets

(X ◊ Y ) ◊ Z and X ◊ (Y ◊ Z).
These two sets are not the same, but there is a natural bijection between
them. This distinction need not worry you for the time being, but thinking
through this statement carefully will do you a lot of good in the future.

There is yet another set you can construct, which we will write

X ◊ Y ◊ Z.

The elements of X ◊ Y ◊ Z consist of ordered triplets (x, y, z) where x œ
X, y œ Y and z œ Z.

Of course if you have a collection of sets, you can take the product of all
of them.

1
This explains the notation R2

; it is quite informal and lazy, but the rationale behind

the notation is the suggestive equality R2
= R ◊ R.
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Example 0.4.5 (Euclidean space). An important example is Rn, which is
the n-fold Cartesian product of R. You may be more familiar thinking of Rn

as n-dimensional Euclidean space.

Example 0.4.6. Fix a set X. We will soon think about functions

X ◊ X æ R.

This means that, for every ordered pair of elements (x1, x2) with x1, x2 œ X,
we will assign a real number.

When X = R, you have seen many examples of such functions:

1. Addition, which sends a pair (x1, x2) to x1 + x2.

2. Subtraction, which sends (x1, x2) to x1 ≠ x2.

3. Multiplication, which sends a pair (x1, x2) to the product x1 · x2.

4. Division is not an example of a function R ◊ R æ R. While you may
happily write a formula taking the pair (x1, x2) to the quotient x1/x2,
this is not defined when x2 = 0.

5. The distance function, which takes a pair (x1, x2) to the distance be-
tween them: |x2 ≠ x1|.

0.5 Definition of metric spaces
Notation 0.5.1. Let X be a set. We will often write an element of X ◊ X
as (x, xÕ). (In the previous section, we used the notation (x1, x2) instead.)
The symbol xÕ is read “x prime.” The reason for this is that we will soon
let X = Rn, so that X itself is made up of ordered tuples; the dual roles
of subscripts will then become quite confusing, so we will use the “prime”
symbol.

Example 0.5.2 (Distance on R2). We’ve already talked about the distance
function on the set X = R:

d : R ◊ R æ R, (x, xÕ) ‘æ |xÕ ≠ x|.

Let’s now think about X = R2. Given two points in R2, what is the distance
between them?
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The Pythagorean theorem tells us: Given two points x = (x1, x2) and
xÕ = (xÕ

1, xÕ
2) in R2, the length of the path between them is given by

d(x, xÕ) =
Ò

(xÕ
1 ≠ x1)2 + (xÕ

2 ≠ x2)2. (0.5.0.1)

Note that this function has a lot of intuitive properties:

1. If x = xÕ, then the distance between x and xÕ is zero.

2. Conversely, if the distance between two points is zero, they are equal
points.

3. The triangle inequality: This is not always intuitive for most students,
but it is a fact of life. If you have three points x, xÕ, xÕÕ, then the distance
from x to xÕÕ is at most the sum of the distances between x and xÕ, and
between xÕ and xÕÕ. (You should draw a picture.)

4. Symmetry: The distance from x to xÕ is the same as the distance from
xÕ to x.

There are others, but we will leave that for exercises or personal exploration.

Example 0.5.3. Now let’s consider a di�erent shape X. For example, let’s
take X to be any arbitrary subset of R2.

Is there still a notion of distance between two points of X? Yes; you could
just measure the distance as you normally would inside R2. Thus we have a
function

d : X ◊ X æ R
by the exact same formula in (0.5.0.1).

Does this function satisfy all the properties we talked about in Exam-
ple 0.5.2? Yes.

We isolate these properties to give the following definition:

Definition 0.5.4. A metric space is the data of a pair (X, d) where X is a
set, and

d : X ◊ X æ R
is a function satisfying the following properties:

(0) d(x, xÕ) = 0 ≈∆ x = xÕ.
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(1) (Symmetry) d(x, xÕ) = d(xÕ, x).

(2) (Triangle inequality) d(x, xÕ) + d(xÕ, xÕÕ) Ø d(x, xÕÕ).

Remark 0.5.5. Intuitively, a metric space is a set with some notion of
distance between two points. Note that a single set X may admit many
di�erent examples of a function d. When should we consider to metric spaces
to be equivalent? We will get to that in Section ??.

Exercise 0.5.6. Show that if (X, d) is a metric space, then for any pair
x, xÕ œ X, we have that d(x, xÕ) Ø 0.

At this point, what questions do you have?

0.6 Continuous maps
Definition 0.6.1. Let (X, dX) and (Y, dY ) be metric spaces. Fix a function
f : X æ Y . We say that f is continuous if:

For all x œ X and ‘ > 0, there exists ” > 0 such that

dX(x, xÕ) < ” =∆ dY (f(x), f(xÕ)).

Remark 0.6.2. Informally, the above definition says that a continuous func-
tion between metric spaces is one that respects the idea of closeness.

You should think of ‘ as a number a mortal enemy gives you, daring you
to be ‘-close (i.e., within ‘) of f(x).

You should think of ” as the number that allows you to vanquish that
dare: If xÕ is any element ”-close to x, then you know that f(xÕ) is ‘-close to
f(x).

0.7 Examples of metric spaces
These are all useful examples. You should do your best to understand them.

Example 0.7.1 (Euclidean space). Let X = Rn. Define

d(x, xÕ) =
ı̂ıÙ

nÿ

i=1
(xÕ

i ≠ xi)2.

This is called the “standard” metric on Rn.
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Example 0.7.2 (Subsets of metric spaces). Let (Y, dY ) be a metric space
and fix a subset X µ Y . Then for any x, xÕ œ X, define d(x, xÕ) = dY (x, xÕ).
This renders (X, d) a metric space.

Example 0.7.3 (Subsets of Euclidean space). In particular, if (Y, dY ) is
Euclidean n-dimensional space with the standard metric, we see that any
subset of Euclidean space inherits a metric space structure.

Example 0.7.4 (Continuous functions on a closed, bounded interval). Here
is one of the more “infinite-dimensional” and di�cult-to-visualize examples.

Let X be the set of continuous functions f : [0, 1] æ R on the closed
interval from 0 to 1. Given two functions f and g, define

d(f, g) =
⁄ 1

0
|f ≠ g|dt.

That is, the distance from f to g is defined to be the integral of |f ≠ g| over
the interval from 0 to 1.

Example 0.7.5 (Sequences with finite support). Let X the set of all se-
quences of real numbers such that the sequence is non-zero for only finitely
many entires. Given two sequences x = (x1, x2, . . .) and xÕ = (xÕ

1, xÕ
2, . . .), we

define
d(x, xÕ) =

Œÿ

i=1
|xÕ

i ≠ xi|.

Note that the summation converges precisely because the summands are
non-zero for only finitely many i.

It is also incredibly useful to consider “trivial,” or maybe the “simplest,”
or most “cheating” examples when you see a new definition.

Example 0.7.6. Let X be the empty set. Then there is a unique function
d : X ◊ X æ R, and this renders X a metric space. (It is okay if you want
to ignore this example.)

Example 0.7.7. Let X be any set. Then define d as follows:

d(x, xÕ) =

Y
]

[
0 x = xÕ

1 x ”= xÕ.

This makes (X, d) into a metric space. Informally, you can think of X as a
weird metric space in which any two non-equal points are exactly distance
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1 apart. It may be fun to imagine what such a thing looks like, especially
when there are infinitely many points in X.

Note that the number 1 is not special here; it could be replaced by any
positive number.







































Lecture 3

3.1 Remarks on writing assignment
I’d like to touch on a few themes that came up in your writing assignments

3.1.1 Continuity of objects and of functions
Many people thought of continuity in terms of properties of an object—for
example, they explored in what sense R seemed like a continuous object.

As I mentioned in class, we define certain ideas (like topological spaces)
to be able to speak of certain functions between them (like continuous func-
tions). So it is indeed a good investment to think about what it means for an
object like R to have certain properties that allow us to speak of continuous
functions out of, or to, R.

3.1.2 f is continuous if f is defined and...
Many students learn in calculus that f is continuous at a if three conditions
are satisfied:

1. f(a) is defined

2. limxæa f(x) exists, and

3. this limit equals f(a).

However, that first condition is superfluous when you have already de-
clared that f : R æ R is a function from R to R. That the domain is R (and
in particular, all of R!) means that f is defined at any a œ R.

1
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The reason that you were taught the above definition is because most
calculus educators are also taught things that way, and the reason they are
taught things that way is because they are not expected to teach with the
precision and sophistication that should be expected of mathematicians (and
of math majors, at least). For example, your calculus class probably did not
consist only of future math majors, so that level of precision was dropped.
If one has a function f : X æ Y , in particular, f is defined on every element
of X.

Finally, in practice, one sometimes writes a formula, and one needs to
verify that f is indeed a function on all of R. For example, if I declare

f(x) = sin x

x

it is not obvious at first whether f is defined at x = 0. Thus you may not
know whether to declare f to be a function on all of R, or only on the set
R \ {0}. So this is at least the beginnings of why so many people are careful
about verifying that f is defined somewhere—we often write formulas, but
formulas do not always make sense everywhere.

3.1.3 Smooth versus continuous
Some people were confused about the existence of “kinks” or “non-smooth”
phenomena, and said that part of their intuition of continuity contained
a “smoothness” requirement. I want to dissuade you from thinking about
smoothness.

First, “smooth” has a technical meaning in math, as it turns out. A
function is smooth if you can take a derivative as many times as you want.
And while every function is smooth, not every continuous function is smooth.
So keep that in mind.

Next, consider the example of f(x) = |x|. The graph of this function is
not a “smooth” object, as it clearly has a kink, or a corner, at the origin.
But the function is still continuous.

3.1.4 “Approached from either side.”
Many people spoke of limits. They said that a limit limxæa f(x) exists if
“when approached from either side” the limiting value is equal.
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This is a fine intuition for limits in R, but what if you are in R2? If you
chose a point a œ R2, there are many ways to “approach it”–not just in terms
of directions, but also in terms of the shape of the path that you take to get
to a. (For example, one could spiral toward a.) You see the situation can be
even more complicated in Rn for high n.

The ‘-” definition of continuity, which we gave without discussing the no-
tion of limit, ignores any “choice” of direction or path by which you approach
a. It simply says that if you want to guarantee that f attains values close to
the value f(a), you simply need to be close to a itself.

3.1.5 Picturing
Many people said they had a hard time picturing the definition of continuity.

That’s perfectly normal. Indeed, even the most seasoned mathematicians
probably do not imagine the most general and crazy examples of continuity;
they may simply imagine something like the function f(x) = |x|.

This is also the power of abstract definitions; in life we sometimes have
to prove or understand things without being able to visualize them.

3.1.6 Understanding
Many people said they do not understand the ‘≠” definition. That is normal.

Let me share a quote from John von Neumann.
“In mathematics you don’t understand things. You just get used to them.”
I strongly disagree with this quote, but it rests on what you mean by

understanding. (Let’s not get into that discussion.) I give this quote note as
a model, but as comfort; even seasoned mathematicians feel like they do not
understand things.

An analogy I dislike, but will use anyway because it is helpful, is the
following: You may not understand how a car works, but you can still drive
it. Rest assured that most mathematicians do not understand everything
they use; and at some point, they have simply had to drive a car without
taking apart every component.

3.1.7 What’s the use of continuity?
This is a great question.

Let me give some sample applications:
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Theorem 3.1.1. Let [a, b] be a closed, bounded interval. Fix a function
f : [a, b] æ R. If f is continuous, then f attains a maximum and a minimum.

This is a very powerful theorem.
As a non-example, consider tan x, which does not attain a minimum or a

maximum—this shows the necessity of the interval of definition being closed.
In this class, we will generalize the above theorem to any continuous

function whose domain is compact. Compactness is a useful notion that
comes up over and over in mathematics—it is useful because it identifies a
large class of spaces that behave well and are easily controlled; it is also a
condition that is easy to check in many cases.

3.2 Some facts about metrics
Now let’s get back to metric spaces.

Exercise 3.2.1. Let (X, d) be a metric space. Prove that for any x, xÕ œ X,

d(x, xÕ) Ø 0.

Proof. Combining the triangle inequality and property zero, we have

d(x, xÕ) + d(xÕ, x) Ø d(x, x) = 0.

By symmetry, we have
2d(x, xÕ) Ø 0.

Dividing by 2, we are done.

The above exercise shows that the notion of distance in a metric space
fits our physical intuition that the distance between any two points ought to
be non-negative. (And, by property zero, positive when x ”= xÕ.)

Last time we left o� as we were about to study the continuity of the
identity function between various metric space structures on Rn.

Of course, there were four di�erent metric spaces. That means there are
a total of

4 ◊ 4 = 16

di�erent combinations of metric for which we would have to verify continuity.
That’s a lot. But here’s a useful fact that will cut down that number:
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Exercise 3.2.2. Fix three metric spaces

(X, dX), (Y, dY ), (Z, dZ)

and two functions f : X æ Y and g : Y æ Z.
Show that if both f and g are continuous, then so is the composition g¶f .

Proof. We must verify the following:
For all x œ X, and for all ‘ > 0, there exists ” such that

dX(x, xÕ) < ” =∆ dZ(gf(x), gf(xÕ)) < ‘.

Well, by the continuity of g, we know that for all y (and in particular, for
y = f(x)) and for all ‘, there exists some ‘Õ so that

dY (f(x), yÕ) < ‘Õ =∆ dZ(gf(x), g(yÕ)). (3.2.0.1)

And by the continuity of f , we know that for all x, and all ‘Õ, there exists ”
such that

dX(x, xÕ) < ” =∆ dY (f(x), f(xÕ)) < ‘Õ. (3.2.0.2)
Thus, given ‘, choose ‘Õ satisfying (3.2.0.1), then choose ” satisfying (3.2.0.2).
We are finished.

3.2.1 Our favorite metrics on Rn

Last time we defined

1. The standard metric

dstd(x, xÕ) =
ı̂ıÙ

nÿ

i=1
(xÕ

i ≠ xi)2

2. The discrete metric

ddiscrete(x, xÕ) =

Y
]

[
0 x = xÕ

1 x ”= xÕ

3. The taxicab metric

dtaxi(x, xÕ) =
nÿ

i=1
|xÕ

i ≠ xi|
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4. The lŒ metric
dlŒ(x, xÕ) = max

i=1,...,n
|xÕ

i ≠ xi|.

We have the identity function

id : Rn æ Rn, x ‘æ x.

We can put any of the metric space structures above on Rn—for which choices
is the identity function continuous?

Example 3.2.3. Consider

id : (Rn, dstd) æ (Rn, ddiscrete).

Is this a continuous function?

I want you now to get into groups and investigate.
Upshot: You should find that the above example is the only example for

which the identity function is not continuous.

3.2.2 A tip
How do you prove a function is continuous? In practice, it comes down to
understanding what the condition

If xÕ is such that dX(x, xÕ) < ”, then dY (f(x), f(xÕ)) < ‘

means. To understand that such xÕ “look like,” we first try to understand
what f(xÕ) might look like.

What does dY (f(x), f(xÕ)) < ‘ mean? That is, what does it mean for
f(xÕ) to be distance less than ‘ apart from f(x)? It means—tautologically—
that f(xÕ) is in the following set:

yÕ such that dY (f(x), yÕ) < ‘.

This is what one calls the open ball of radius ‘ centered at f(x) (with respect
to the metric dY ).

Example 3.2.4. We have drawn examples of open balls of radius 1 for our
various metrics on Rn.
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A common strategy to prove the continuity of a function f : X æ Y is
to understand the set of those xÕ that end up in the open ball of radius ‘
centered at f(x). That is, under what circumstances do we have that

f(xÕ) œ { yÕ such that dY (f(x), yÕ) < ‘. }?

This comes down to understanding the following:

What xÕ are contained in the preimage f≠1({ yÕ such that dY (f(x), yÕ) < ‘. })?

In other words,

What isf≠1({ yÕ such that dY (f(x), yÕ) < ‘. })? (3.2.2.1)

Note that x is always contained in this set.
Once you understand this set, you can ask the following: Is there an open

ball centered at x (of some radius ” > 0) contained in this set?
If you can find such a ”, and if you can do this for every ‘ > 0 and every

x œ X, you have proven the continuity of f : X æ Y .
Let me summarize. The following statements are more or less equivalent

descriptions of the process:

1. To show f : X æ Y is continuous, you must answer in the a�rmative:
“Is there an open ball of radius ” > 0 centered at x contained in the
preimage of the open ball of radius ‘ centered at f(x)?” for every choice
of x œ X and for every choice of ‘ > 0.

2. Continuity comes down to verifying that you can always find open balls
centered at x contained in the preimage of open balls centered at f(x).

We got back together and discussed. We discussed the following three
examples:

• id : (Rn, dstd) æ (Rn, dstd).

• (Rn, dstd) æ (Rn, dtaxi).

• (Rn, dstd) æ (Rn, ddiscrete).
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3.2.3 The identity function from a metric space to it-
self

Proposition 3.2.5. id : (Rn, dstd) æ (Rn, dstd) is continuous.

Remark 3.2.6. We are verifying that f is continuous for the case X = Y =
Rn, dX = dY = dstd, and f = id. The proof will thus use the notations
X, Y, dX , dY to make clear when I am speaking of the domain, or of the
codomain.

For the proof, we follow the tip:

Proof of Proposition 3.2.5. Note that for any x œ Rn, f(x) = x because we
have chosen f = id.1 Note also the following:

dX(x, xÕ) = dstd(x, xÕ)
= dstd(f(x), f(xÕ))
= dY (f(x), f(xÕ)). (3.2.3.1)

That is,
dX(x, xÕ) = dY (f(x), f(xÕ)). (3.2.3.2)

As such, given any ‘ > 0, let us simply set ” to be any positive real number
less than or equal to ‘. Then if dX(x, xÕ) < ”, we have that dY (f(x), f(xÕ)) <
‘. This shows f is continuous.

Note that we did not use anything about Rn or dstd in the proof—indeed,
the string of equalities uses the notation dstd, but the equalities hold for any
choice of metric so long as dX = dY . We conclude:

Proposition 3.2.7. Let X = Y and dX = dY , and let f : X æ Y be the
identity function. Then f is continous.

Proof. Note that (3.2.3.2) is true when f = id and dX = dY . Then follow
the rest of the proof of Proposition 3.2.5.

1
That is, we have chosen f to be the identity function.
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3.2.4 Isometric embeddings and isometries
In fact, we have done something even better. We do not need X to equal
Y , nor for dX to equal dY . The proof of Proposition 3.2.5 relied only on the
equality (3.2.3.2). This is a useful condition, so let’s give it a name.
Definition 3.2.8. Let (X, dX) and (Y, dY ) be metric spaces. Fix a function
f : X æ Y . We say that f is an isometric embedding if f preserves distances.
That is,

dX(x, xÕ) = dY (f(x), f(xÕ))
for all x, xÕ œ X.

If f is further a bijection, we say that f is an isometry.
Proposition 3.2.9. Let (X, dX) and (Y, dY ) be metric spaces. Fix a function
f : X æ Y . If f is an isometric embedding, then f is continuous. In
particular, any isometry is continuous.
Proof. Follow the proof of Proposition 3.2.5 beginning with (3.2.3.2).

3.2.5 From standard to taxi
Then we verified that the identity function from Rn with the standard metric
to Rn with the taxicab metric is continuous:
Proposition 3.2.10. Let (X, dX) = (Rn, dstd) and (Y, dY ) = (Rn, dtaxi).
Then the identity function

f = id : X æ Y

is continuous.
Proof. Fix x œ X. We note that the open ball of radius ‘ centered at f(x)2 is
a diamond centered at f(x), whose distance from f(x) to any of the corners
of the diamond is ‘. Because f = id, the preimage of this diamond is the
diamond itself (now considered as a subset of X).

In R2, we drew a picture to see that any diamond with ‘ > 0 “clearly”
contains an open ball of radius ” > 0 centered at x, so long as ” is small
enough. For a picture and precise formula, see the scanned notes.

To prove for Rn for general n, one employs the formula from the scanned
notes to verify indeed that one can find ” > 0 small enough so that the
continuity condition holds.

2
with respect to dY = dtaxi!)
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3.2.6 From standard to discrete
Proposition 3.2.11. The function

id : (Rn, dstd) æ (Rn, ddiscrete)

is not continuous.

Proof. It su�ces to exhibit an x œ X and ‘ > 0 such that for any ” > 0,
there exists some xÕ such that

dX(x, xÕ) < ” and dY (f(x), f(xÕ)) Ø ‘.

For this, choose ‘ to be any positive real number less than or equal to 1. We
saw last time that the open ball of radius ‘ (with respect to ddiscrete) centered
at f(x) is then a single point, given by f(x) itself.

Because f = id, the preimage of this set is the same set—that is, the
preimage if the set {x} consisting of a single point, called x.

Of course, for any ” > 0, the open ball of radius ” centered at x can not
be contained in this singleton set.



Lecture 4

4.1 Some confusions
Students have come in with some confusions, so let me discuss them.

1. The notation
(X, dX)

does not refer to some point on R2. It is a pair of things, but it is not a
pair of numbers. For example, X is a set—perhaps the set of bananas
in this room—and dX is a metric on this set.

2. When I write something like

f : X æ Y (4.1.0.1)

I mean a function from X to Y , and I have called the function f . Now,
when I have chosen two metric spaces, I will often write

f : (X, dX) æ (Y, dY ). (4.1.0.2)

The two notations (4.1.0.1) and (4.1.0.2) mean the same thing. That
is, the latter notation still encapsulates a function from X to Y . The
reason I include the metrics dX and dY in the notation is because it is
often important to remind the reader which metrics we are considering.1

3. Make sure you understand my notation using x œ Rn and the indices
xi. A point x œ Rn is determined by a finite collection

(x1, x2, . . . , xn)
1
As we have seen, the same set may allow many di�erent metrics.

1
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of real numbers. Likewise, a point xÕ œ Rn is determined by a collection

(xÕ
1, xÕ

2, . . . , xÕ
n)

of real numbers. So when I write a formula like

dlŒ(x, xÕ) = max
i=1,...,n

|xÕ
i ≠ xi|

I mean that I consider the collection of real numbers2

{|xÕ
1 ≠ x1|, |xÕ

2 ≠ x2|, . . . , |xÕ
n ≠ xn|}

and I take the maximum number in this set (consisting of n real num-
bers). As an example, if n = 4 and I take two points

x = (fi,
Ô

2, 1, 1)

and
xÕ = (8, 2,

Ô
3, 1)

then we would have

dlŒ(x, xÕ) = max{|8 ≠ fi|, |2 ≠
Ô

2|, |
Ô

3 ≠ 1|, |1 ≠ 1|}

so
dlŒ(x, xÕ) = 8 ≠ fi.

4.2 Last time
Last time we talked about the continuity of the following functions:

1. id : (Rn, dstd) æ (Rn, dstd).

2. id : (Rn, dstd) æ (Rn, dtaxi).

3. id : (Rn, dstd) æ (Rn, ddiscrete).

The main toolkit I wanted you to come away with was the following:
To investigate the continuity of a function f : X æ Y , you have to see

if you can fit some open ball (of radius ” > 0) into the preimage of an open
ball (of radius ‘ > 0).3

2
Again, the xÕ

i are the coordinates of the point xÕ
, and the xi are the coordinates of

the point x
3
The former is centered at x œ X, the latter is centered at f(x) œ Y .
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4.3 Open sets of a metric space

4.3.1 Open balls
Today, I want to get us used to talk about open sets. Let’s record as a formal
definition some of the terms we’ve been using.

Definition 4.3.1. Let (X, dX) be a metric space. Fix x œ X and real a
number r > 0.

The open ball of radius r, centered at x, is the set

{xÕ œ X such that dX(x, xÕ) < r.}

We will use any of the following notations4 to denote this set:

Ball(x; r) B(x; r) BdX (x; r) BX(x; r).

Remark 4.3.2. Some authors extend the definition to the case r = 0. Then
the open ball of radius 0 is the empty set; but we will not follow this con-
vention.

4.3.2 Definition of open subset
Definition 4.3.3 (Open set of a metric space). Let (X, dX) be a metric
space, and let A µ X be a subset.

We say that A is open if it can be written as the union of open balls.

4.3.3 Examples of open sets
Example 4.3.4. Let (X, dX) be a metric space. Fix x œ X and r > 0. Then
A = Ball(x; r) is an open set; it can be written as a union of a single open
ball—namely Ball(x; r).

The following is one of the more confusing examples for people.

Example 4.3.5. Let (X, dX) be a metric space and let A = ÿ µ X be the
empty set.

Then A is open.
4
Having all this notation is confusing, but you could already see why it was useful to

have notation like dX and dY to distinguish di�erent metrics; these ri�s/modifications to

the notations also come in handy when disambiguating certain metric spaces.
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Remark 4.3.6 (Digression into unions). Let me explain this a little bit.
When you think of unions of sets, you may think of something pictorial like
a Venn diagram.

(Draw a Venn diagram.)
How do you take a union of sets? Well, you first specify the sets you want

to take the union of, and then you combine their elements into a single set.
What if you specify no sets at all? Then the union of this collection of

sets (the empty collection) is the empty set.
Some people are confused by Example 4.3.5 because they are only used

to seeing unions of some non-zero number of sets.
But let me reiterate: A union of zero-many sets is the empty set. So

the empty set can be written as the union of a collection (albeit an empty
collection) of open sets.

Example 4.3.7. Let (X, dX) be a metric space. Then the set A = X itself
is open.

To see this, fix any r > 0, and consider the collection

{Ball(x; r)}xœX .

This is a collection of open balls. Let’s explain the notation. The curly
brackets {...} means we are defining a set. The subscript x œ X means for
every x œ X, we can specify an element in this set. Which element? The
notation Ball(x; r) means that the open ball Ball(x; r) is the element.

Confusingly, this is an example of a set of sets. You will get used to this.
Now, consider the union

€

xœX

Ball(x; r).

This is a potentially gigantic union. There are many sets we are taking the
union of—-for every x œ X, we are considering the open ball of radius r, and
we are taking the union of every single one of these balls.

Note that this union is contained in X, as each ball is a subset of X.
Moreover, any element of X is contained in the union, as any x œ X is
contained in the ball Ball(x, r). Thus,

X =
€

xœX

Ball(x; r).

So X is open (as it is written as a union of open balls).
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Example 4.3.8. There is an even larger collection one can write down to
prove that X is open. Consider the collection

{Ball(x, r)}xœX,r>0

where now we are considering an open ball not just for every choice of x œ X,
but also for every choice of real number r > 0.

Let me discuss a common confusion that this example can illustratively
dispel—note that even if r ”= rÕ, the balls Ball(x, r) and Ball(x, rÕ) may be
the same. (We saw this in the discrete metric; for example, r = 0.5 and
rÕ = 0.4 give the same open balls.)

Thus, the subscripts in the set notation do not need to uniquely specify
an element of the set.

Another confusion: When exhibiting that a set A is open, you do not
need to choose some e�cient collection of open balls. For example, we have
seen two ways to exhibit X as an open set. The second way we have seen
(which not only takes an open ball for every x, but also for every r > 0) is
far less “e�cient” because we have so many open balls; that is fine. Do not
be tempted to make a “snug” or “just right” collection of open balls to form
a set, as overkill is sometimes useful.

Exercise 4.3.9. Let X = R2 and let A be the set

A = {x œ R2 such that dlŒ(0, x) < ”}.

This is the “open” square centered at the origin of width 2”. (Put another
way, this is the open ball of radius ” in (R2, dlŒ). For which of the following
metrics on X is A an open set?

1. dstd

2. ddiscrete

3. dtaxi

4. dlŒ

Proof. All of them!
We must write A as the union of open balls. Thus, for every x œ A, we

must exhibit some open ball contained in A and containing x.
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Let us tackle dstd first. Given x = (x1, x2), there is a well-defined (stan-
dard) distance to the boundary of A. Namely, consider the distances

|” ≠ x1|, | ≠ ” ≠ x1|, |” ≠ x2|, | ≠ ” ≠ x2|.

These measure the distance of x from the edges of the square. Note that
because A is the open square5, each of these distances is non-zero. Let rx be
the minimum of the four distances above. Then Balldstd

(x; rx) is contained
iN A. Thus we see that

€

xœA

Balldstd
(x; rx) = A.

This verifies that A is an open set in (R2, dstd).
I’ll omit the proofs of the others. Note that dlŒ is the “easiest” case

because A is already an open ball in that case.
As for the other metrics, you simply need to find an rx for every x such

that the open ball of radius rx (with respect to the chosen metric) is contained
in A. For example, this is easy for the discrete metric—just choose rx to be
anything less than or equal to 1. For the taxicab metric, note that the
diamond of corner-to-center length r fits inside the standard ball of radius r,
so you could choose the same rx as for dstd.

Exercise 4.3.10. Let X = R2 and let A = {x} consist of a single point. For
which of the following metrics on X is A an open set?

1. dstd

2. ddiscrete

3. dtaxi

4. dlŒ

Proof. Only for the discrete metric. Note that any open ball of positive
radius in the other metrics contains at least two points (in fact, any open
ball of positive radius contains infinitely many points in any of the non-
discrete metrics); but A contains only one point, so A could not contain any
open ball of positive radius. In particular, A cannot be written as the union
of open balls.

5
meaning the “boundary” of A is not part of A
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Exercise 4.3.11. Let X = R and let A = [≠3, 3] be the closed interval from
-3 to 3. For which of the following metrics on X is A an open set?

1. dstd

2. ddiscrete

3. dtaxi

4. dlŒ

Proof. Only the discrete metric.
To see why A is not open in the other metrics, note that if A can be

written as a union of open balls, then in particular, there must be some open
ball that contains 3 œ A, and is contained inA.

But in any of the non-discrete metric, if an open ball B of positive radius
contains 3, it must also contain some number larger than 3. But such a
number is not contained in A. In particular, B could not be contained in A.

Finally, A is open in the discrete metric because we can write

A =
€

xœA

Ballddiscrete
(x; r)

for any r œ (0, 1].

4.4 Open sets and continuity
In math, when you’ve found a way to translate one sophisticated thing into
another, you’ve discovered something wonderful. We’re about to discover
something wonderful:

Theorem 4.4.1. Let (X, dX) and (Y, dY ) be metric spaces. Fix f : X æ Y
a function. The following are equivalent:

1. f is continuous.

2. For any open set V µ Y , the preimage f≠1(V ) is open.
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4.4.1 Centering open balls
The proof will be streamlined if we utilize the following lemma:

Lemma 4.4.2. Let (X, dX) be a metric space, and fix x œ X and r > 0.
Suppose that xÕ is contained in BallX(x, r). Then there exists rÕ > 0 such
that

Ball(xÕ, rÕ) µ Ball(x, r).
In English, if xÕ is a point contained in an open ball (centered at a possi-
bly di�erent point x), then one can always find an open ball centered at xÕ

contains in the original open ball.

Proof. We set
rÕ = r ≠ dX(x, xÕ).

Indeed, if any other point w is contained in Ball(xÕ, rÕ), the triangle inequality
says

dX(x, w) Æ dX(x, xÕ) + dX(xÕ, w)
but the righthand side satisfies

dX(x, xÕ) + dX(xÕ, w) < dX(x, xÕ) + rÕ = dX(x, xÕ) + r ≠ dX(x, xÕ) = r.

So we are finished.

4.4.2 Proof of Theorem 4.4.1.
Recall that to prove two statements are equivalent, we need to prove that
one implies the other, and vice versa.

Proof. We first prove that (1) implies (2). Let V µ Y be open. We must
prove that if f is continuous, then f≠1(V ) is open. So choose x œ f≠1(V ).
The goal is to find some ball Bx of positive radius containing x and contained
in f≠1(V ). (If we can do this for all x œ f≠1(V ), then we have that

f≠1(V ) =
€

xœf≠1(V )
Bx

and this would show that f≠1(V ) is open.)
Since V µ Y is open, it can be written as a union of open balls. In

particular, there is some open ball BallY (y, r) such that

f(x) œ BallY (y, r) µ V.
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Claim One: There exists some ‘ > 0 such that BallY (f(x), ‘) µ BallY (y, r).
Indeed, this is the reason I introduced Lemma 4.4.2. Using that lemma,
Claim One is proven.

Now, by the continuity of f , there exists ” such that dX(x, xÕ) < ” =∆
dY (f(x), f(xÕ)) < ‘; in particular, there is some ” such that the ball of radius
” centered at x is contained in f≠1(BallY (f(x), ‘)). But we know that

BallY (f(x), ‘) µ BallY (y, r) µ V

so in particular,
BallX(x, ”) µ f≠1(V ).

We have accomplished our goal. This proves that (1) implies (2).
Now let us prove that (2) implies (1). If we assume that the preimage of

any open set is open, we must prove that f is continuous.
So fix x œ X and fix ‘ > 0. Then the open ball V = BallY (f(x), ‘) is an

open subset of Y , so in particular, we know that f≠1(V ) is an open subset
of X. By definition, then, it can be written as the union of open balls—in
particular, there is some open ball containing x. By Lemma 4.4.2, we may
choose this ball to be centered at x, and we will write its radius as ”. By
construction, this ball is contained in f≠1(V ), and we thus have

f(BallX(x, ”)) µ V = BallY (f(x), ‘).

In other words, if any point xÕ is within ” of x, it follows that dY (f(x), f(xÕ)) <
‘. This completes the proof.



Lecture 5

Tuesday, September 10th

Today, you will do some in-class exercises.
Work individually, or in groups, as you like.
These exercises will prepare you for a quiz you will have at the end of

today’s class.

5.1 Practice with metrics
Let X = Rn. An element x œ X is thus represented by a sequence of n real
numbers, and we will denote this sequence by

x = (x1, x2, . . . , xn)

where xi denotes the ith coordinate of x.
Recall we have defined the following:

1. dstd(x, xÕ) =
Òqn

i=1(xÕ
i ≠ xi)2

2. ddiscrete(x, xÕ) =

Y
]

[
0 x = xÕ

1 x ”= xÕ.

3. dtaxi(x, xÕ) = qn
i=1 |xÕ

i ≠ xi|

4. dlŒ(x, xÕ) = maxn
i=1 |xÕ

i ≠ xi|

1
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Example 5.1.1. Let n = 3 and let

x = (1, fi, 8), xÕ = (3, fi + 5, 16).

The we have that

dstd(x, xÕ) =
ı̂ıÙ

3ÿ

i=1
(xÕ

i ≠ xi)2

=
Ò

(xÕ
1 ≠ x1)2 + (xÕ

2 ≠ x2)2 + (xÕ
3 ≠ x3)2

=
Ò

(3 ≠ 1)2 + ((fi + 5) ≠ fi)2 + (16 ≠ 8)2

=
Ô

22 + 52 + 82

=
Ô

4 + 25 + 64
=

Ô
93

ddiscrete(x, xÕ) = 1

dtaxi(x, xÕ) =
3ÿ

i=1
|xÕ

i ≠ xi|

= |xÕ
1 ≠ x1| + |xÕ

2 ≠ x2| + |xÕ
3 ≠ x3|

= |(3 ≠ 1)| + |(fi + 5) ≠ fi| + |16 ≠ 8|
= 2 + 5 + 8
= 15

dlŒ(x, xÕ) = nmax
i=1

|xÕ
i ≠ xi|

= max{|xÕ
1 ≠ x1|, |xÕ

2 ≠ x2|, |xÕ
3 ≠ x3|}

= max{|(3 ≠ 1)|, |(fi + 5) ≠ fi|, |16 ≠ 8|}
= max{2, 5, 8}
= 8
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5.1.1
Let n = 4 and let

x = (1, 3, 7, 16), xÕ = (3, 8, 2, 1).

Compute each of the following:

1. dstd(x, xÕ)

2. ddiscrete(x, xÕ)

3. dtaxi(x, xÕ)

4. dlŒ(x, xÕ).
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5.1.2
Let (X, d) be a metric space. Fix x œ X and r > 0. Recall that Balld(x, r)
is the set of all points xÕ satisfying d(x, xÕ) < r.

Let X = R2 and let x = (1, 3). Draw each of the following:

1. Balldstd
(x, 3)

2. Ballddiscrete
(x, 3)

3. Balldtaxi(x, 3)

4. BalldlŒ (x, 3)

Make sure you can justify what you draw.
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5.1.3
This is a challenge problem.

Let X = Rn, and for every real number p Ø 0, let us define a function

dlp(x, xÕ) =
A

nÿ

i=1
(|xÕ

i ≠ xi|)p

B1/p

.

Question: For which values of p does this define a metric on X?
(Note that if p = 1, this is the taxicab metric. If p = 2, it is the standard

metric.)
You can draw picture to try an make a guess, but this is a hard problem.

So good luck and have fun!
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5.2 Quiz

5.2.1 (12 points)
Let n = 4 and let

x = (2, 3, 1, 4), xÕ = (3, 8, 2, 1).

Compute each of the following:

(a) dstd(x, xÕ)

(b) ddiscrete(x, xÕ)

(c) dtaxi(x, xÕ)

(d) dlŒ(x, xÕ).

In case you need it:

• dstd(x, xÕ) =
Òqn

i=1(xÕ
i ≠ xi)2

• ddiscrete(x, xÕ) =

Y
]

[
0 x = xÕ

1 x ”= xÕ.

• dtaxi(x, xÕ) = qn
i=1 |xÕ

i ≠ xi|

• dlŒ(x, xÕ) = maxn
i=1 |xÕ

i ≠ xi|



0 LECTURE 5. TUESDAY, SEPTEMBER 10TH

5.2.2 Extra Credit. 10 points
Let (X, d) be a metric space. Which of the following is true?

(a) The function
dlog(x, xÕ) = log |d(x, xÕ) + 1|

defines a metric on X.

(b) The function
dexp(x, xÕ) = exp(d(x, xÕ)) ≠ 1

defines a metric on X.

You will get a full 5 points for every complete proof, or counterexample.
You will not get any negative points for an incorrect response.



Lecture 6

Thursday, September 12th

Today, you are going to explore how continuity plays with convergence of
sequences. You had a warm-up to this in your first homework assignment,
where you explored convergence for sequences in the real line.

Definition 6.0.1. Let (X, d) be a metric space. Fix a sequence

x1, x2, x3, . . .

of points in X. We say that the sequence converges to x œ X if the following
holds:

For every ‘ > 0, there exists a number N so that

i > N =∆ d(xi, x) < ‘.

Remark 6.0.2. In plain English, this means that if you want to be ‘-close
to x, you just need to be at least N -far-along in the sequence.

Definition 6.0.3. We say a sequence is convergent if there exists an element
x to which it converges.

Feel free to work individually, or in groups. If you get stuck, make sure
to figure out where, how, or why you get stuck.

1
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6.1
Suppose that a sequence x1, x2, . . . converges to x, and also converges to xÕ.
Show that x = xÕ.

That is, show that if a sequence converges, it converges to a unique point.
(What properties of metric space did you use in your proof?)
(Make sure that in your proof, you are never subtracting or adding ele-

ments of X, but you are only subtracting/adding elements of R.)



6.2. 3

6.2
Let (X, dX) and (Y, dY ) be metric spaces, and fix a function f : X æ Y .
Show that the following are equivalent:

(a) f is continuous.

(b) If x1, . . . , is a convergent sequence, then so is f(x1), . . ..

(c) If x1, . . . , is a sequence converging to x, then f(x1), . . . is a sequence
converging to f(x).
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6.3 (Optional)
Can you think of two metric spaces (X, dX) and (Y, dY ), and a continuous
bijection f : X æ Y , such that the inverse function f≠1 : Y æ X is not
continuous?

Can you think of such a thing when X = Y = Rn and dX , dY are one of
the non-discrete metrics we’ve discussed? (I.e., when we choose dX and/or
dY to be one of dstd, dtaxi, dlŒ?) Why or why not?



Lecture 7

Tuesday, September 17th

7.1 Non-negativity of metrics
Exercise 7.1.1. Let (X, d) be a metric space. Show that d(x, xÕ) Ø 0 for
any x, xÕ œ X.

Proof. Use the triangle inequality for x = xÕ = xÕÕ. Then

0 = d(x, xÕÕ) Æ d(x, xÕ) + d(xÕ, xÕÕ) = 2d(x, xÕ).

So (dividing the beginning and the end by 2), we see d(x, xÕ) Ø 0.

7.2 Simplifying the verification of continuity
Exercise 7.2.1. Let (X, dX) and (Y, dY ) be metric spaces, and fix a function
f : X æ Y . Show the following are equivalent:

1. For any open set V , f≠1(V ) is an open set.

2. For any open ball Ball‘(y), f≠1(V ) is an open set.

Proof. 1 implies 2: Any open ball is an open set; so setting V = Ball‘(y), 1
implies 2.

2 implies 1: We know that any open set V is a union of open balls, so

V =
€

Ball‘(y)

1
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for some collection of open balls. Thus

f≠1(V ) =
€

f≠1(Ball‘(y))

where the righthand side is a union of open subsets of X. In homework you
proved that any union of open subsets is again open. Thus f≠1(V ) is open.
This proves 2 implies 1.

Putting together everything, we have proven the following so far in this
class:

Theorem 7.2.2. Let (X, dX) and (Y, dY ) be metric spaces. Fix a function
f : X æ Y . The following are equivalent:

1. f is continuous.

2. The preimage of any open subset of Y is an open subset of X.

3. The preimage of any open ball of Y is an open subset of X.

4. f sends convergent sequences in X to convergent sequences in X.

7.3 From homework
Let X and Y be metric spaces. Define the following metric on X ◊ Y :

d((x, y), (xÕ, yÕ)) = dX(x, xÕ) + dY (y, yÕ).
Show that the projection map (x, y) ‘æ x is continuous.

Proof. There are two ways you could do this.
(i) Using ‘-”. Fix an element of the domain, (x0, y0), and some ‘ > 0. We

must show the existence of some ” such that

d((x0, y0), (x, y)) < ” =∆ dX(x0, x) < ‘. (7.3.0.1)

I claim any ” Æ ‘ works. This is because

d((x0, y0), (x, y)) = dX(x0, x) + dY (y0, y) Ø dX(x0, x).

Where the last inequality follows because dY (y0, y) Ø 0. Thus (7.3.0.1) fol-
lows if ” Æ ‘.
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(ii) Using that a function is continuous if and only if the preimage of any
open set is open.

Let’s call our function fi, so fi(x, y) = x. By the exercise earlier this
lecture, we must verify that for any open ball in X, the preimage is an open
subset of X.

So fix an open ball B‘(x) µ X. Here, x œ X and ‘ > 0. By definition of
fi, the preimage of this is the set of all pairs (x, y) such that x is in the ball,
and y is arbitrary. This can be written as a union of open balls as well:

€

r,xÕ such that Br(xÕ)µB‘(x)

€

yœY

Br((xÕ, y))

Remark 7.3.1. Note that (ii) seems a little bit more complicated. Regard-
less, we have two very di�erent-looking proofs of the same fact. This is a
good sign that the equivalent criteria for continuity are appreciably di�erent,
and hence useful! (Having two very di�erent ways to tackle the same problem
is a gift.)

7.4 Intuition for open sets in metric spaces
What is the intuition for how to think about an open set in a metric space?
Recall that an open set in a metric space is any subset that can be written
as a union of open balls. Recall also that we proved the following lemma last
time I lectured: If x is contained in some open ball Ball‘Õ(xÕ), then there is
another open ball Ball‘(x), centered at x, taht is contained in Ball‘Õ(xÕ).

Corollary 7.4.1 (Of the Lemma). Let (X, d) be a metric space and let
U µ X be an open subset. Then for any x œ U , there exists an open ball
centered at x.

In fact, we have

Proposition 7.4.2. Let (X, dX) be a metric space and fix a subset U µ X.
The following are equivalent:

1. U is an open subset.

2. For any x œ U , U contains an open ball of some (small) positive radius
centered at x. That is, there exists ” > 0 so that Ball(x; ”) µ U .
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Proof. 1 implies 2. We use the (re)centering lemma from last time I lectured.
If U is open, it’s a union of open balls:

U =
€

–

Ball(x–, ”–)

where – indexes some collection of centers x– and radii ”–. Thus for any
x œ U , there is some – so that x œ Ball(x–, r–). By the (re)centering lemma,
this means that there is some ” so that

Ball(x, ”) µ Ball(x–, r–).
In particular,

Ball(x, ”) µ U.

2 implies 1. For every x œ U , choose ”x so that Ball(x, ”x) µ U . Then we
have that €

xœU

Ball(x, ”x) = U.

To see this equality, note that the righthand side is contained in U (because
a union of subsets is still a subset). The lefthand side is contained in the
righthand side: Given xÕ œ U , note that Ball(xÕ, ”xÕ) is one of the balls in the
union on the lefthand side, and in particular, xÕ œ Ball(xÕ, ”xÕ).
Remark 7.4.3. This proposition is supposed to give you intuition for what
open sets look like: U is open if and only if for any x œ U , x has “enough
wiggle room,” or “enough breathing room” in U . By “wiggle room,” I mean
there is some ” so that x can move around in an open ball of radius ” without
leaving U .
Warning 7.4.4. The notion of being an open subset depends on the metric
space we are in. That is, when we say “U is open,” we have a metric space
in mind of which U is a subset.
Example 7.4.5 (Of sets that are not open). Let A µ R be a closed bounded
interval. Then A is not open. For example, at the endpoint x of A, no open
interval about x is fully contained in A. (To see this: Any open interval
(x ≠ ‘, x + ‘) contains some element larger than, or some element less than,
x. But because x is an endpoint, it is either the minimal or maximal element
of A. Without loss of generality, assume x is minimal. Then A could not
contain an element less than x itself.)

Likewise, let A µ R2 be a closed bounded interval. Then A is not open.
For example, even if x is in the interior of A, no open ball of R2 fits inside
A.
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7.5 Beyond metric spaces
So just as we’re getting used to metric spaces, I want to suggest to you that
the zoo of metric spaces is too constricting. For the next half an hour, I’d
like you to think about the following problems:

1. Can you give the circle a metric space structure? How about the
sphere? How? Can you give any subset of Rn a metric space structure?
Are they meaningful?

2. Consider the “set of all lines through the origin” in R2. Make sure
you think about what this means. Can you give this a metric space
structure?

3. Consider the shape you would get if you were to take a sheet of paper,
and carefully glue/tape two opposing edges together. Can you give this
a metric space structure?

What we saw in class is that the first example is not so bad to tackle: Any
subset A µ X of metric space (X, dX) can be given a metric space structure.

Definition 7.5.1. Let (X, dX) be a metric space and let A µ X be a subset.
The subset metric, or induced metric on A is

dA(x, xÕ) := dX(x, xÕ).

The subset metric is indeed a metric on A. I’ll the proof to you as an
exercise.

In class we had some di�culty with the set of lines in R2. We had the
insight to try to assign to each line an “angle,” but this assignment didn’t
seem continuous. And depending on how we made the shape obtained by
gluing a sheet of paper along its edges, the metrics could be di�erent.

But the notion of having “wiggle room”—we were supposed to discover—
is one we can articulate better.

Main idea: Sometimes, it’s easier to think about wiggle room (open sets)
than it is to think about metrics.

We’ll begin next time with topological spaces.



Lecture 8

Thursday, September 19th

8.1 Some announcements

8.1.1 Collaboration policy
Some of your homeworks are far too similar. Please read the collaboration
policy I’ve put online. In short, you can collaborate, and you can consult
sources, but when you are writing (whether on a laptop, phone, or paper) your
homework for submission, you must be alone and not using any resources.

8.1.2 Multiple choice
From now on, multiple choice responses for homework will be submitted on-
line. Links will be on the website every week. Don’t let the convenient format
fool you—the multiple choices are often the hardest part of the homework.
You do not need to hand in paper submissions. These are always do be-
fore 1:50 PM on Tuesdays. Anything submitted after 1:50 PM will not be
accepted.

8.1.3 Next homework
For the next proof homework, I will scan copies of your submissions and
share them with the class. You will get to see the work of other classmates;
and your classmates will see your submissions, too.

Put your names on the homeworks; I will anonymize them the best I can
when I share with class.

1
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8.2 More on open sets
Last time we saw the following intuition for open sets in metric spaces: A
subset U µ X is open if and only if for every x œ U , there is a (small) open
ball of positive radius, centered at x and contained in U . We interpreted this
to mean that a set U is open if and only if every x œ U has “wiggle room”
inside U .

Remark 8.2.1. In class discussions and in homeworks, I have also seen some
of you engage with the notion of a “boundary” of a set. We will talk about
this in due time.

A philosophy I’ve mentioned more than once: To study objects, we need
to study the functions between them. This philosophy is not at all obvious
in your earliest serious math classes, but you’ve at least seen that there
are many interesting functions f : R æ R to explore (in calculus class, for
example). But it is an important philosophy regardless.

What we have seen so far in class—though you may not have noticed
it—is that for a map (X, dX) æ (Y, dY ) to be continuous certainly depends
on the metrics in play, but that it doesn’t depend on the entire data of the
metrics. For example, we have seen that to check whether a function is
continuous, we only need to check whether preimages of open sets are open.

In other words: Continuity depends only on open sets.

Remark 8.2.2. Combining our intuition of “wiggle room” with our “open
set” test for continuity, we arrive at the following intuition. A function
f : X æ Y is continuous if and only if: Every x œ X has wiggle room1 to
stay within any specified wiggle room2 of f(x).

So here’s a natural question: Does the collection of open sets of a metric
space “remember” the metric of the metric space? Put another way, if (X, dX)
is a metric space, and T is its collection of open sets, does T determine dX?
The answer is no:

Theorem 8.2.3. Let Tstd denote the collection of open sets in Rn for dstd.
Likewise, we let Ttaxi and TlŒ denote the collections of open sets in Rn

with respect to dtaxi and dlŒ .
1
i.e., a ball of radius ”

2
a ball of radius ‘
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Then
Tstd = Ttaxi = TlŒ .

Proof. I will sketch a proof.
Let U µ Rn be open with respect to the standard metric. Then for any

x œ U , there is some ”std so that
Ballstd(x; ”std) µ U.

But given ”std, I claim there exists ”taxi such that
Balltaxi(x; ”taxi) µ Ballstd(x; ”std).

That is, any open ball in the standard metric (centered at x) contains an open
ball in the taxicab metric (also centered at x). I will just draw a picture of
this in class. (It turns out you could take ”taxi = ”std because the open ball
in the standard metric is convex.)

We conclude that if U is open with respect to dstd, it is open with respect
to dtaxi.

Conversely, let U be open with respect to dtaxi. Then for any x œ U ,
there is an open ball Balltaxi(x, ”taxi) centered at x and contained in U . You
can check that the shortest standard distance from x to a “wall” of this
taxicab-ball (which is a diamond-shaped region) is given by

”taxi

Ò
1/n

where n is the dimension of Rn. Thus we see that
Ballstd(x, ”taxi

Ò
1/n) µ Balltaxi(x, ”taxi) µ U

so U is open with respect to dstd as well.
This shows Tstd = Ttaxi.
A similar proof shows that Tstd = TlŒ .

Thus, although the metrics on Rn are distinct, they give rise to the same
collection of open sets.

This proves the following:
Corollary 8.2.4. The identity functions

(Rn, dstd) æ (Rn, dtaxi) (Rn, dstd) æ (Rn, dlŒ)
(Rn, dtaxi) æ (Rn, dstd) (Rn, dtaxi) æ (Rn, dlŒ)
(Rn, dlŒ) æ (Rn, dtaxi) (Rn, dlŒ) æ (Rn, dstd)

are all continuous.
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Proof. The preimage of U is given by U . Moreover, if U is open with respect
to one of the metrics above, it is also open with respect to any of the others
by the previous result. This shows that the preimage of any open subset is
open, hence the identity function is continuous.

Corollary 8.2.5. Let (Y, dY ) be a metric space. Let f : Rn æ Y be a
function. Then f is continuous with respect to the standard (or taxi, or lŒ)
metric if and only if it is continuous with respect to any of three metrics
above (standard, taxi, or lŒ).

Proof. Let V µ Y be open. Then f≠1(V ) is open with respect to one of the
three metrics above if and only if it is open with respect to all of them.

Remark 8.2.6. This is the first hint that a notion of distance helps detect
continuity, but continuity does not depend on a notion of distance! How
great is that?

8.3 Constructing new spaces
So we have seen two kinds of things with the word “space” in the name. Let
me recall them both:

Definition 8.3.1. A metric space is a pair (X, d) where X is a set and
d : X ◊ X æ R is a function satisfying:

(0) For all x, xÕ œ X, d(x, xÕ) = 0 ≈∆ x = xÕ.

(1) For all x, xÕ œ X,d(x, xÕ) = d(xÕ, x), and

(2) For all x, xÕ, xÕÕ œ X, we have that

d(x, xÕ) + d(xÕ, xÕÕ) Ø d(x, xÕÕ).

Definition 8.3.2. A topological space is a pair

(X,T)

where X is a set, and T is a collection of subsets of X, satisfying the following
three properties:

1. Both ÿ and X are elements of T.
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2. If U1, . . . , Uk is a finite collection of elements of T, then the intersection
U1 fl . . . fl Uk is an element of T. That is, T is closed under finite
intersections.

3. If A is an arbitrary set and A æ T is a function (so for every – œ A
we have an element U– œ T) then the union

€

–œA

U–

is also in T. That is, T is closed under arbitrary unions.

Definition 8.3.3. We will call T a topology on X, and any element U œ T
will be called an open subset of X.

Example 8.3.4. Let (X, dX) be a metric space, and let T be the collection
of open sets determined by dX . (That is, U œ T if and only if U is a union
of open balls.) Then you proved in homework that (X,T) is a topological
space.

Definition 8.3.5. Let (X, dX) be a metric space and let T be the collection
of open sets with respect to dX . We say that T is the topology induced by
the metric.

Remark 8.3.6. Note that these definitions have incredibly di�erent flavors.
For example, the notion of metric space depends very much on numerical or
quantitative statements—meaning we rely on properties of the real line. (For
example, we rely on the fact that we know how to add elements of R, and
on the fact that we knowhow to compare the sizes of elements of R.)

In contrast, the definition of topological space is much more barren—it
does not even need mention of the real line. It only relies on the fact that we
can consider subsets of a set X, and that we can take unions and intersections
of subsets.

Remark 8.3.7. This barrenness is both a strength and downside of the
definition. The downside is that it takes a lot to get used to. But the
strength is that one can speak of many interesting phenomena under the
same umbrella—even if we cannot measure distances. In some sense, it frees
us from our dependence on distance.

Though I have not framed things this way, we have seen that we can
construct new metric spaces from old ones. For example:
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1. If (X, d) is a metric space, then any subset A µ X can be made into a
metric space under the subset metric.

2. If (X, dX) and (Y, dY ) are metric spaces, then the product X ◊ Y can
be made into a metric space.

Warning 8.3.8. There are many non-equivalent ways to make X ◊ Y into
a metric space. This was explored a little bit in one of the exercises in-class;
and it already visible in the case of X = Y = R.

For example, R2 has many di�erent metrics, as we’ve seen. In parallel,
X ◊ Y can be given any of the following metrics:

1. d((x, y), (xÕ, yÕ)) = dX(x, xÕ) + dY (y, yÕ). (If X = Y = (R, dstd), this
gives rise to the taxicab metric in R2.)

2. d((x, y), (xÕ, yÕ)) =
Ò

dX(x, xÕ)2 + dY (y, yÕ)2. (If X = Y = (R, dstd), this
gives rise to the standard metric in R2.)

3. d((x, y), (xÕ, yÕ)) = max{dX(x, xÕ), dY (y, yÕ)}. (If X = Y = (R, dstd),
this gives rise to the lŒ metric in R2.)

Remark 8.3.9 (Quotients will become easy). Last time, we saw an example
where given S1 µ R2, it was very easy to construct a metric on S1 by just
using the subset metric. But when we had to think about the set of lines in
R2, or the cylindrical shape formed by gluing two edges of a sheet of paper
together, it was not so obvious how to define a metric that everybody agreed
on.

These latter two examples are examples of “quotient spaces.” It turns out
that while it is very di�cult to naturally put metrics on quotient spaces, it
is very easy to put a topology on them.

For now, let’s see that it is easy to construct topologies on subsets and
on product sets, just as it was easy to construct metrics on them. If you
believe that quotients are also easy places to construct topologies, we see
that working with topological spaces has a lot of pros:

1. It’s easy to construct new spaces, and

2. The notion of continuity can be expressed purely in terms of open sets.
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8.3.1 Subset topology
Exercise 8.3.10. Let (X,T) be a topological space, and fix a subset A µ X.
Define

TA

to consist of those subsets W µ A such that W = U fl A for some U œ T.
(That is, a subset of A is declared open if and only if it is the intersection of
A with an open set of X.)

Prove that TA is a topology on A.

Proof. We must verify the three properties:

1. ÿ œ TA because ÿ fl A = ÿ and ÿ œ T. Likewise, A œ TA because
A = X fl A and X œ T.

2. Consider a finite collection W1, . . . , Wk œ TA. For each Wi, we know

Wi = Ui fl A

for some Ui œ T. Then

W1 fl . . . fl Wk = (U1 fl A) fl . . . (Uk fl A) = (U1 fl . . . fl Uk) fl A

and this last term is an intersection of an open set U1 fl . . .flUk with A.
(Note that the intersection of the Ui is open because T is a topology.)

3. Now fix an arbitrary collection {W–}–œA. Then for each –, there exists
some U– œ T such that W– = U– fl A. So

€

–

W– =
€

–

(U– fl A) = (
€

–

U–) fl A.

The set in the parentheses is open because T is a topology; hence this
intersection is in TA by definition of TA.

Definition 8.3.11. Let (X,T) be a topological space and A µ X a subset.
The topology TA on A is called the subset topology on A.
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Remark 8.3.12. The above proof is typical of the kinds of proofs you’ll see
in general topology—the formulas are formulas involving intersections and
unions of sets, and the way we index these intersections and unions take a
bit of getting used to. This is inherent in the definition of topological space:
Because the definition only uses tools of sets (intersections, unions, et cetera)
so too will the proofs use such tools.

This is contrast to metric spaces, where we got to use real numbers,
additions, and inequalities.
Example 8.3.13. Let X = R2 with the standard topology (induced by
the standard metric—or the taxicab metric, or the lŒ metric). And let
A = S1 µ X be the unit circle. Let us endow A with the subset topology.

Then a subset W µ A is open if and only if it is the intersection of an
open set of R2 with the circle. You should try drawing some examples. For
instance, any open interval on the circle is an open subset. The circle itself
is an open subset, too.

Note that it is impossible for you to draw every open subset of R2; there
are just too many. One of the powers of the definition of topological space
is that you don’t need to know what all open subsets are. Often, you’ll only
need to know some basic open subsets that all other open subsets are made
of; this will lead us to the notion of a basis for a topology, and we’ll see that
in a week or two.
Remark 8.3.14. Suppose that (X, dX) is a metric space; then we know that
a subset A µ X inherits a metric space structure. Since (A, dA) is a metric
space, one can induce a topology from the metric.

On the other hand, we have just seen that A can inherit a topology from
X (without passing through a metric on A).

It turns out that these two topologies are the same. I’ll leave this as an
exercise to you.

8.3.2 Product topology
Definition 8.3.15. Let (X,TX) and (Y,TY ) be topological spaces. Let us
define

T

to be the collection of subsets of X ◊ Y that can be expressed as unions of
sets of the form U ◊ V , where U œ TX and V œ TY .

We call this the product topology on X ◊ Y .
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Exercise 8.3.16. Show that T is a topology on X ◊ Y .
Proof. 1. The empty set can be written as ÿ ◊ ÿ, so the empty set is in T.

Like wise, X ◊ Y is in T because X and Y are open sets of X and Y ,
respectively.

2. We first note that if U, U Õ and V, V Õ are open subsets of X and Y ,
respectively, then

(U ◊ V ) fl (U Õ ◊ V Õ) = (U fl U Õ) ◊ (V fl V Õ).

To see this, note that (x, y) is in the intersection if and only if x œ U flU Õ

and y œ V fl V Õ.
So suppose that W œ T, so

W =
€

–œA

U– ◊ V–

is some union of products of open subsets of X and Y . Fix another
open subset

W Õ =
€

—œB

U— ◊ V—.

Then3

W fl W Õ =
€

–œA,—œB

(U– ◊ V–) fl (U— ◊ V—) =
€

–œA,—œB

(U– fl U—) ◊ (V– fl V—)

is a union of products of open sets.

3. If {W–}–œA is some collection of open sets, each W– can be expressed
as a union

W– =
€

“œC–

U“ ◊ V“.

Hence €

–œA

W– =
€

–œA,“œC–

U“ ◊ V“

is a union of products of open sets as well. This shows t
– W– œ T.

3
This is a careful application of facts about sets. Note that for something to be in

the intersection of W and W Õ
, it must be contained in some U– ◊ V– and some U— ◊ V— .

Likewise, if an element in the intersection of some U– ◊ V– and some U— ◊ V— , it is in

W fl W Õ
. In other words, if I take the intersection of U– ◊ V– with U— ◊ V— for every –, —,

and consider the union of these intersections, I recover W fl W Õ
.
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Lecture 9

Tuesday, September 24th

9.1 Intro to quotient spaces
In homework, you showed the following:

Fix a topological space (X,TX) and a surjection p : X æ Y . Then
you can give Y a topology. Moreover, this topology satisfies the following
property:

If (Z,TZ) is another topological space, then a function f : Y æ Z is
continuous if and only if the composition p ¶ f : X æ Z is continuous.

Remark 9.1.1. The power of this statement is that you can check the con-
tinuity of f by checking something between X and Z, not between Y and
Z. If you have more information about X then about (Y,TY ), this is a very
useful technique.

But where do surjections X æ Y come from? There is a natural source:
When Y is a quotient of X. Today’s goal is to explain this.

In the last couple classes, we’ve tried to consider the two following sets:

1. The set of all lines through the origin (in R2), and

2. The cylinder-like gadget one gets by gluing two edges of a sheet of
paper together.

I claim that we can realize both sets as the Y in the quotient space
construction, and thereby endow these sets with topologies.

1
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Example 9.1.2. In the example of the cylinder-like gadget, the sheet of
paper surjects onto the cylinder like object. So the sheet of paper is the X
and the cylinder-like gadget is the Y .

It is not at obvious what X one can take to surject onto the set of lines
in R2 through the origin.

9.2 Equivalence relations and quotient sets
I want to tell you how to take a set X and “glue” some of its elements
together.

Remark 9.2.1. This is imprecise, but is meant to give intuition. In what
follows, the following expressions will roughly mean the same thing:

1. To “glue” two points of X together.

2. To make two points of X equal.

3. Identifying two points of X.

The mathematical toolkit we have for identifying points of X is called an
equivalence relation.

Definition 9.2.2. Let X be a set. An equivalence relation on X is a choice
of subset

E µ X ◊ X

satisfying the following:

(0) (Reflexivity.) For every x œ X, the element (x, x) must be in E.

(1) (Symmetry.) For every x, xÕ œ X, if (x, xÕ) œ E, then (xÕ, x) is in E.

(2) (Transitivity.) For every x, xÕ, xÕÕ œ X, if (x, xÕ) œ E and (xÕ, xÕÕ) œ E,
then (x, xÕÕ) œ E.

Notation 9.2.3. Let E µ X ◊ X be an equivalence relation on X. Then
we will write

x ≥ xÕ

and say “x is related to xÕ” whenever (x, xÕ) œ E.
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Example 9.2.4. In the ≥ notation, the above three properties of an equiv-
alence relation may be written as

(0) (Reflexivity.) For every x œ X, x ≥ x.

(1) (Symmetry.) For every x, xÕ œ X, x ≥ xÕ =∆ xÕ ≥ x.

(2) (Transitivity.) For every x, xÕ, xÕÕ œ X, x ≥ xÕ and xÕ ≥ xÕÕ implies
x ≥ xÕÕ.

Example 9.2.5. The prototypical example of an equivalence relation is the
equality relation. That is,

x ≥ xÕ ≈∆ x = xÕ.

In this example, E is equal to the set of all pairs (x, x). (That is, those (x, xÕ)
such that x = xÕ.) In terms of the intuition that an equivalence relation tells
you which elements to identify, this relation tells you to introduce no new
identifications—i.e., you only glue a point to itself, so you are not gluing any
non-distinct points together.

Example 9.2.6. Another example of an equivalence relation is to glue ev-
erything together—i.e., to glue any two points to each other. That is,

x ≥ xÕ for any x, xÕ œ X.

That is, E is equal to X ◊ X itself.

Now let us give a name for the set of all points that are identified to each
other.

Definition 9.2.7. Fix a set X and an equivalence relation E µ X ◊ X. An
equivalence class of E is a subset A µ X satisfying the following:

(0) A is non-empty.

(1) If x œ A and x ≥ xÕ, then xÕ œ A.

(2) If x, xÕ œ A, then x ≥ xÕ.

Exercise 9.2.8. Fix an equivalence relation E on X and let A1, A2 µ X be
two equivalence classes. Show that if there exists an element x œ A1 fl A2,
then A1 = A2.
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Proof. Let [x] be the collection of those xÕ œ X such that x ≥ xÕ. I first claim
that if any equivalence class A contains x, then A = [x].

A µ [x] follows from property (2) of an equivalence class (Definition 9.2.7).
[x] µ A follows from property (1) of an equivalence class.
Thus A1 = [x] = A2 and we are finished.

What the above exercise tells us is that any equivalence relation on X
partitions X. That is, it allows us to write X as a union of subsets called
equivalence classes:

X =
€

A

Moreover, if A ”= AÕ, then A fl AÕ = ÿ. Thus X is a union of subsets that are
disjoint from one another.

Definition 9.2.9. Let X be a set and E µ X ◊ X an equivalence relation
on X. Then we let

X/ ≥
and

X/E

denote the set of equivalence classes of E. That is,

X/E = {A µ X such that A is an equivalence class.}

We call X/E the quotient set of X (with respect to E).

Remark 9.2.10. So for example, the following notations make sense:

A œ X/E, A µ X, x œ A.

However, the following does not make sense:

A µ X/E, x œ X/E.

Note that we have a function

q : X æ X/E, x ‘æ The equivalence class A containing x.

We know that every x œ X belongs to some equivalence class because of
property (0) of an equivalence relation, and we know that every x belongs
to a unique equivalence class because of the exercise—hence the function q
is indeed well-defined.
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Definition 9.2.11. The function q : X æ X/E is called the quotient map
(with respect to E).

Remark 9.2.12. Intuitively, the data of E tells you which points to glue
together. X/E is the set one gets after gluing together those points. The
quotient map q tells you that a point x œ X goes to the point in X/E
resulting from gluing together all those points related to x.

Remark 9.2.13. The function q is a surjection. This is by property (0) of
equivalence class: Any equivalence class has at least one element in it, hence
any A equals q(x) for some x.

9.2.1 The collection of lines through the origin in R2

We tackled this set a week ago. Let’s give this set a name.

Notation 9.2.14 (RP 1). We let RP 1 denote the set of all lines through the
origin in R2.

Remark 9.2.15. This notation is common in the literature. RP 1 is also
called the real projective line.

Our goal is to understand whether we can think of RP 1 as a topological
space.

How do you specify a line through the origin in R2?
Approach One. Specify a point on the circle. Then there’s a unique

line that goes through that point and the origin. So there is a function

p : S1 æ RP 1.

Note that this function is not one-to-one; for example, two antipodal points
on a circle (i.e., two points given by angle ◊ and by ◊fi) determine the same
line. Regardless, p is a surjection, so we can try to endow RP 1 with the
topology you induced on homework.

Approach two. Specifying an equation for the line. Recall that any line
can be expressed as the set of pairs x1, x2 satisfying the equation

ax1 + bx2 = c.

If the line is to pass through the origin, then we know c must equal zero.
Moreover, for the above equation to specify a line, then at least one of a or b
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must be non-zero. So any pair (a, b) ”= (0, 0) determines a line La,b through
the origin:

(a, b) ‘æ La,b = {(x1, x2) such that ax1 + bx2 = 0.

This defines another function

p : R2 \ {0} æ RP 1, (a, b) ‘æ La,b.

This is a surjection because every line through the origin is determined by
some equation of the form ax1 + bx2 = 0. However, this function is not an
injection.

Exercise 9.2.16. Fix a pair (a, b) and (aÕ, bÕ). Then La,b = LaÕ,bÕ if and only
if there exists a non-zero real number t ”= 0 such that

(ta, tb) = (aÕ, bÕ).

So we have laid out two approaches. In either approach, we have found a
set X together with a surjection p : X æ RP 1. Moreover, intuitively, both
these surjections should feel continuous. (Informally: If you wiggle a point
in S1, you are wiggling the line passing through that point. If you wiggle the
parameters a and b, you are wiggling the line given by that parameter.) So
a natural way to give a topology to RP 1 is by giving it the quotient topology
induced by the surjections p (as defined in your homework).

9.3 When are two spaces equivalent?
So we have two distinct ways of exhibiting a surjection to RP 1:

1. As a quotient of the sspace {(a, b) such that (a, b) ”= (0, 0) = R2 \
{(0, 0)}, and

2. As a quotient of S1.

So, a priori, we have two di�erent topologies on RP 1. Are they the same?
Put another way, are the quotient topologies on

(R2 \ {(0, 0)}/ ≥) and S1/ ≥
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“equivalent” in some sense?
This brings us to a natural question:
When should we consider two topological spaces to be equiva-

lent?
I want to emphasize a di�erence between two things being “equal” (or

the same) and two things being “equivalent.” For example, a set of three
bananas is not the same set as a set of three apples. But they can be treated
as equivalent for many set-theoretic purposes. The reason is that they have
the same “size,” or cardinality; that is, the two sets are in bijection.

Put another way, we consider two sets to be equivalent if there exists a
bijection between them. And the bijection exhibits in what way we consider
them to be equivalent.

So how about spaces? Spaces are not just sets, but sets equipped with a
topology (i.e., a collection open sets). So we should consider two spaces to be
equivalent if they are not only equivalent as sets, but also have “equivalent”
collections of open sets. More on this next time.
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Lecture 10

Thursday, September 26th

What we learned last time has a huge pay-o�: We get to construct a lot of
fun and interesting spaces.

10.1 Elaborations on last time
Last time we talked about equivalence relations and equivalence classes; these
allowed us to construct the quotient topology on quotient spaces. Let me
introduce a bit of notation:

Notation 10.1.1. Let E be an equivalence relation on X, and let A µ X
be an equivalence class containing some x œ X. We will write

[x] µ X

for this equivalence class. So [x] = [xÕ] if and only if x ≥ xÕ.

Example 10.1.2. Let X = {1, 2, 3, 4} be a set of 4 elements we call 1, 2, 3
and 4. Let’s say we want to glue 2 to 3, and 3 to 4. Such a gluing will result
in a set with two elements.

Let’s be explicit about the equivalence relation E µ X ◊ X that encodes
the idea that we want to glue 2 to 3 and 3 to 4. E is, explicitly:

E = {(1, 1), (2, 2), (3, 3), (4, 4),
(2, 3), (3, 2)
(3, 4), (4, 3)
(2, 4), (4, 2)}.

1
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The first row of elements are in E by reflexivity: Any element should be
related to itself. For example, (1, 1) œ E means that 1 ≥ 1.

The second row follows because we want to glue 2 to 3 (so we want 2 ≥ 3)
and by symmetry (which says that 3 must be related to 2 — i.e., (3, 2) œ E).

Likewise for the third row, because we want to glue (i.e., declare equiva-
lent) 3 to 4.

Finally, the last row follows by transitivity: If we are gluing 2 to 3, and
3 to 4, then we are also gluing 2 to 4.

We can list the equivalence classes of E explicitly. We have two:

A = {1}, B = {2, 3, 4}.

The set X/E = {A, B} is the two element-set we obtain by gluing as pre-
scribed.

Remark 10.1.3. To reiterate: An equivalence relation E tells you what you
elements you want to glue together, and the quotient set X/E is the result
of gluing.

Let me motivate quotient spaces a little more. You are probably used to
visualizing shapes in three-dimensional space (i.e., R3); but there are spaces
that cannot be visualized as sitting in R3. Here is an example:

Example 10.1.4. Let X = [0, 1] ◊ [0, 1] µ R2; X is a square. Consider the
relation

(0, x2) ≥ (1, x2) and (x1, 0) ≥ (1 ≠ x1, 1)

(and of course, (x1, x2) is related to itself) for all x1, x2 œ [0, 1]. The common
shorthand drawing for this gluing is as follows:
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(Note that the vertical edges are glued in a way respecting their orientations,
while the two horizontal edges are glued in a way that flips them. You
should try and make this shape at home. I promise you won’t be able to
do it in a way where things are embedded nicely (in fact, embedded at all!)
in your three-dimensional space. The upshot is that quotient spaces give
us a way of talking about many di�erent kinds of spaces—even those that
we cannot visualize in three-dimensions. Note also that (because of our
particular presentation) it seems at first di�cult to try to embed this space
in Rn for any n.

Remark 10.1.5. However, if we only glue the two horizontal edges (with
orientations flipped), one can perform this gluing in our three-dimensional
space.

Give it a try if you’ve never seen this before. The result space is called a
Mobius strip.

Let me also remark that the mobius strip actually embeds into the shape
from the previous example:

.
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So even though we cannot visualize easily the shape from the previous ex-
ample, we do know that it contains a mobius strip (somehow).

So at the very least, we can motivate quotient spaces as follows: Quotient
spaces are often examples of interesting spaces.

10.2 Coproducts (disjoint unions)
Here is another way:
Notation 10.2.1. Let X and Y be sets. We let

X
·

Y

denote the disjoint union of X and Y . This is also called the coproduct of X
and Y .
Remark 10.2.2. In case you haven’t see ‡ before, let me tell you how it’s
di�erent from the usual union operation. For example, with the ordinary
union, X fi X = X; that is, any set union itself gives back that set.

But X
‡

X ”= X. Disjoint union means we formally treat the two sets as
made of distinct elements (even if the sets may have intersection) and then
take the union. So for example, if X is a finite set with N elements, then
X

‡
X is a finite set with 2N elements.

A more formal way to construct the disjoint union of sets is as follows.
Fix a set A and for each a œ A, fix a set Xa. Then the disjoint union of the
Xa, denote ·

aœA

Xa,

is the set consisting of those ordered pairs (a, x) where a œ A and x œ Xa.
In particular, when A is a set consisting of two elements a and b, this defines
the disjoint union of two sets:

Xa

·
Xb.

Definition 10.2.3. Let (X,TX) and (Y,TY ) be topological spaces. We en-
dow the disjoint union

X
·

Y

with the following topology: A subset W µ X
‡

Y is open if and only if
W fl X and W fl Y are both open.

We call this the coproduct topology on X
‡

Y .
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Example 10.2.4. Let ú be a set consisting of one element. This has a unique
topology—every subset is declared open.

Then ú ‡ ú is a set consisting of two elements. Every subset of ú ‡ ú is
open.

More generally, for any set A, one can take the coproduct
·

–œA

ú.

This coproduct is a set in bijection with A, and it has a topology such that
every subset is open.

Example 10.2.5. Let X, Y, Z be topological spaces. Then a function f :
X

‡
Y æ Z is continuous if and only if the associated functions X æ Z and

Y æ Z are both continuous.
Put another way, to check whether f is continuous, we do not need to

check anything that involves both X and Y at once; informally, this means
that X and Y do not have topologies that “talk” to each other; a point x œ X
has no “desire” or “knowledge” to be within wiggling room of a point of Y .

10.2.1 Discrete spaces
Definition 10.2.6. Let X be a set. The discrete topology on X is the
topology for which every subset of X is open.

A topological space equipped with the discrete topology is called a discrete
space.

Example 10.2.7. Suppose X and Y are discrete spaces. Then any bijection
between them is a homeomorphism.

Example 10.2.8. Any discrete space X is homeomorphic to a coproduct;
namely, setting A = X, we have that X is homeomorphic to

·

aœA

ú.

Example 10.2.9. Let X = Rn and equip X with the discrete metric. Then
the associated topology on Rn is the discrete topology. To see this, note that
for any x œ Rn, the open ball of radius r < 1 centered at x is just the set
{x} consisting only of x. Hence any subset of Rn is open (because any set is
a union of its elements).
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Remark 10.2.10. You should think of a discrete space as made up of a
bunch of “disconnected” points.

For example, continuous maps out of discrete spaces are not interesting
from the viewpoint of topology: For any topological space Y , and any discrete
space X, any function f : X æ Y is automatically continuous. (This is
because the preimage of any V µ Y is some subset of X, but every subset of
X is open!)

Intuitively, a function is not continuous precisely when it doesn’t respect
some desire for points on X to “stay wiggling near each other.” That any
function f : X æ Y is continuous means that the points of X have no such
wiggling relationship with each other.

10.2.2 The trivial topology
Let X be any set. We saw in the previous section that X admits a topology
called the discrete topology; it was in some sense a silly topology because
any subset of X was deemed open. There is another silly topology: Declare
ÿ and X to be the only open subsets of X.

Definition 10.2.11. Let X be a set. The trivial topology on X is the one
for which ÿ and X are the only open sets.

Example 10.2.12. Let W be any topological space, and let X be a space
equipped with the trivial topology. Then any function W æ X is continuous.

This is “dual” to the discrete topology; it was easy to construct continuous
functions whose domains were discrete; what we see is that it is also easy to
construct continuous functions whose codomains have trivial topology.

Example 10.2.13. There are only two sets for which the trivial and discrete
topology coincide: The empty set, and the set with one element.

Example 10.2.14. Let X be a set, and let Ttriv and Tdiscrete be the trivial
and discrete topologies on X, respectively. Then the identity function

(X,Tdiscrete) æ (X,Ttriv)

is continuous, but the identity function

(X,Ttriv) æ (X,Tdiscrete)

is not.
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10.3 Summary of how to make topological
spaces

So far we’ve seen:

1. Metric spaces give rise to topological spaces. Explicitly, given (X, d),
we declare U œ TX if and only if U is a union of open balls. (Example:
(R, dstd) gives rise to R with the standard topology—a subset of R is
open if and only if it is a union of open intervals.)

2. Products of topological spaces have natural topological space struc-
tures. (Example: R2 = R◊R, and more generally, Rn.) Given (X,TX)
and (Y,TY ), we declared a subset of X ◊ Y to be open if and only if it
is a union of sets of the form U ◊ V with U œ TX , V œ TY .

3. Subsets of topological spaces have natural topological space structures.
(Example: S1 µ R2).

4. Quotients of topological spaces have natural topological space struc-
tures. (Example: RP 1, or the “cylinder”-like object.)

5. Coproducts

We have so many ways of making new spaces, that maybe you’ll do some
di�erent things and end up making equivalent spaces! But what does it mean
for spaces to be equivalent?

10.4 Homeomorphism
Last class we left o� on the topic of: When are two spaces equivalent?

Proposition 10.4.1. Let (X,TX) and (Y,TY ) be topological spaces. Fix a
bijection f : X æ Y . Then the following are equivalent:

1. The preimage operation f≠1 sends open sets of Y to open sets of X;
moreover the induced function TY æ TX is a bijection.

2. f is continuous, and the inverse of f is continuous.
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I did not give the proof in class, but you may assume this result from
now on. Here is a proof for those who are curious:

Proof. (1) =∆ (2): By definition, if the operation V ‘æ f≠1(V ) sends open
sets to open sets, then f is continuous. Let g be the inverse function to f .
We must show that g is continuous to finish the proof.

If U µ X is open, we must verify that g≠1(U) is open in Y . Well, the
operation f≠1 : TY æ TX is a bijection, and in particular, a surjection.
Hence there is some open subset V µ Y such that U = f≠1(V ). Because g
is the inverse to f , we have that g≠1(U) = f(U) = f(f≠1(V )); because f is
a surjection, f(f≠1(V )) = V . Thus g is continuous, as was to be shown.

(2) =∆ (1): Because f is continuous, we know that the preimage
operation f≠1 defines a function TY æ TX . This is an injection because f
is a surjection.1 To show that TY æ TX is a surjection, we invoke that the
inverse function g is continuous—for then the preimage operation defines a
function g≠1 : TX æ TY , and because f≠1(g≠1(U)) = U , we conclude that
the preimage operation f≠1 is a surjection.

So this gives us the following notion of equivalence of topological spaces:

Definition 10.4.2. Let X and Y be topological spaces. We say that a
function f : X æ Y is a homeomorphism if

1. f is a bijection,

2. f is continuous, and

3. The inverse of f is continuous.

We will say that two topological spaces are homeomorphic if there exists a
homeomorphism between them, and we will write

X ≥= Y

to mean that X is homeomorphic to Y .
1
In general, for any function f , we have that f(f≠1

(V )) µ V . When f is a surjection,

f(f≠1
(V )) = V . In particular, if f is a surjection, we have that f≠1

(V ) = f≠1
(V Õ

) =∆
V = V Õ

.
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Example 10.4.3. Note that even if f is a bijection and continuous, it may
be that the inverse to f is not continuous. An example is given by the identity
function

f = id : (Rn, ddiscrete) æ (Rn, dstd).

This is a continuous function, but its inverse function (which is again the
identity function) is not continuous.

10.5 Examples of quotient spaces
Quotient spaces take some time to get used to; but I want to encourage you to
think freely and pictorially about them as you also learn to think rigorously
about them. Here are examples to give you some intuition.

Example 10.5.1. Let X = [0, 1] be the closed interval from 0 to 1. Let E
be the equivalence relation where the only non-trivial relation is 0 ≥ 1. We
will write

X/(0 ≥ 1)

for the quotient space (equipped with the quotient topology from your home-
work).

Then
X/(0 ≥ 1) ≥= S1.

That is, this quotient space is homeomorphic to a circle. This is “clear” if
you know how to visualize things, but otherwise it can seem like a non-trivial
statement. We’ll talk about how to prove this at a later time, but you should
draw a picture to see why this might be true.
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Lecture 11

More on equivalence relations,
and RP n

11.1 Surjections and equivalence relations
A question was asked in class:

“Does any continuous surjection p : X æ Y form an equivalence rela-
tion?”

We recognized this was imprecise because we have no definition for when
a function “forms” an equivalence relation. For example:

1. Equivalence relation on what? On X or on Y ?

2. What relationship would one like p to have with this relation?

3. What does continuity have to do with it?

Indeed, let’s take continuity out of the picture—so that X and Y are just
sets, and p is just a function. After several rounds of discussion, we came
upon the following question:

Question 11.1.1. Let p : X æ Y be a surjection. Does there exist an
equivalence relation on X so that X/ ≥ is in bijection with Y ?

Here is what we saw:

Proposition 11.1.2. Let p : X æ Y be a surjection. And define a relation
on X by

x ≥ xÕ ≈∆ p(x) = p(xÕ). (11.1.0.1)

1
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Equivalently, this relation is given by the set E µ X ◊ X where

E = {(x, xÕ) such that p(x) = p(xÕ)}.

Then this is an equivalence relation.

Proof. (Reflexivity.) We must show that for all x œ X, we have x ≥ x. This
follows because p(x) = p(x).

(Symmetry.) We must show that for all x, xÕ œ X, if x ≥ xÕ, then xÕ ≥ x.
Well,

x ≥ xÕ =∆ p(x) = p(xÕ) =∆ p(xÕ) = p(x) =∆ xÕ ≥ x.

(Transitivity.) We must show that for all x, xÕ, xÕÕ œ X, if x ≥ xÕ and
xÕ ≥ xÕÕ, then x ≥ xÕÕ. Here is a proof:

x ≥ xÕ, xÕ ≥ xÕÕ =∆ p(x) = p(xÕ), p(xÕ) = p(xÕÕ) =∆ p(x) = p(xÕÕ) =∆ x ≥ sÕÕ.

Then we proved:

Proposition 11.1.3. Let X/ ≥ be the quotient set defined by the equiva-
lence relation (11.1.0.1). Then there exists a bijection from X/ ≥ to Y .

Remark 11.1.4. Just to make sure we know what’s going on:

• The definition of ≥ depended on p; we expect the function X/ ≥æ Y
to also depend in some way on p.

• X/ ≥ is the set of equivalence classes of ≥. that is, it is a set of sets.

• Recall that an equivalence class of ≥ is a subset A µ X such that

– if x œ A, then all xÕ such that xÕ ≥ x is also in A; moreover,
– if x, xÕ œ A, then x ≥ xÕ

• Recall also that if x œ A and A is an equivalence class, we write

[x] = A.
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Proof. Let’s first define the bijection. We will call it „ : X/ ≥æ Y .
Given A œ X/ ≥, let x œ A. Then we define

„(A) := p(x).

(Well-definedness of „.) Note that this function „ seems to depend on
something—that is, to define „(A), we first had to choose x œ A, and then
apply p to x. But our function should depend only on A (the element of the
domain X/ ≥) and not on a choice of x. Let us verify this. If we had chosen
another xÕ œ A, then—by definition of equivalences class—we know that
x ≥ xÕ. Hence—by the definition of ≥ in (11.1.0.1)—we know p(x) = p(xÕ).
So „ is well-defined.1 Which is to say, „ is indeed a function with the specified
domain and codomain.

(Injection.) We now prove „ is an injection. This means we must show
that if „(A) = „(AÕ), then A = AÕ.

So suppose „(A) = „(AÕ). By definition of „, that means that for all
x œ A and xÕ œ AÕ, we have

p(x) = „(A) = „(AÕ) = p(xÕ).

But by definition of our equivalence relation (11.1.0.1), we know that p(x) =
p(xÕ) =∆ x ≥ xÕ. So A = AÕ because two equivalences classes that share an
element are identical. (This is from a previous class.)

(Surjection.) We now prove „ is a surjection. Fix y œ Y . Because p
is a surjection, there exists x œ X so that p(x) = y. Let A = [x] be the
equivalence class containing x. Then by definition of „, we have that

„(A) = „([x]) = p(x) = y.

This proves that „ is a surjection.

Remark 11.1.5. The only place we used that p is a surjection is in proving
that „ is a surjection. In general, regardless of whether p is a surjection, we
will always have that X/ ≥ is in bijection with the image of p.

Next, we can actually try to ask some question about topology. Namely,
1
In general, we say that an assignment a priori depending on particular choices is

well-defined if it does not depend on those choices.
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Question. Let X and Y be topological spaces, and fix a continuous
surjection p : X æ Y . Consider the bijection

„ : X/ ≥æ Y

from above.
1. Is „ continuous?

2. Is „ a homeomorphism?
Let’s take this one step at a time. Recall:

Definition 11.1.6 (Quotient topology.). Let X be a topological space and
≥ an equivalence relation on X. Let

q : X æ X/ ≥ x ‘æ [x]

be the quotient map. Then we define a topology on X/ ≥ by declaring that
U µ X/ ≥ is open if and only if q≠1(U) is open.
Proposition 11.1.7. Give X/ ≥ the quotient topology. Then the quotient
map q : X æ X/ ≥ is continuous.
Proof. We must prove that for any U µ X/ ≥ open, q≠1(U) is open. This is
how openness for a subset of X/ ≥ is defined.

Importantly, note that the quotient topology on X/ ≥ is exactly the
topology you put (in homework) on the codomain of any surjection. In
particular, we have the following result from homework:
Proposition 11.1.8. Let f : X/ ≥æ Z be a function. Then f is continuous
if and only if the composition f ¶ q is open.

By the way, going back to the question above: While the map X/ ≥æ Y
is continuous, it is not always a homeomorphism. For example, let X be Rn

with the discrete topology, and Y be Rn with the standard topology (induced
by the standard metric). Then the identity function X æ Y is continuous,
and the map X/ ≥æ Y is also continuous (and a bijection). But its inverse
is not continuous, because the composite

id : Y æ X/ ≥æ X

is not a continuous map. (Note that because id : X æ Y is a bijection,
the quotient map X æ X/ ≥ has is a bijection, hence there is an inverse
X/ ≥æ X.)
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11.2 RP 1 and RP 2

Next time, we will talk more about the following two spaces:
RP 1, which is the space of all lines through the origin in R2. This is

topologized by noticing that there is a surjection

p : S1 æ RP 1

which sends a point x on the circle to the unique line passing through x and
the origin. p is a surjection (because any line through the origin intersects
the circle at some x), and is not an injection, but is a 2-to-1 map (every line
through the origin goes through exactly two points on the circle, so for every
L œ RP 1, there are exactly two points in p≠1(L)). Then we can endow RP 1

with the quotient topology.
Likewise, let RP 2 be the space of all lines through the origin in R3. How

is this a space? That is, how do we topologize it?
We do the same trick as before: We notice there is a function S2 æ RP 2.

Given a point x on the sphere, there is a unique line through the origin that
also passes through x. We call this assignment p : S2 æ RP 2. Then p, as
before, is a 2-to-1 surjection. We topologize RP 2 by the quotient topology.

This RP 2 is a cool space. It turns out it cannot be embedded into R3, so
we do not have a perfect way of visualizing it. Moreover, we will eventually
see that RP 2 admits an embedding of the Mobius band inside of it.

More on this next time.
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Lecture 12

Real projective plane

12.1 RP 1 and RP 2

Recall that RP 1 is the set of lines through the origin in R2. And RP 2 is the
set of lines through the origin in R3. These spaces are pronounced “R P one”
and “R P two,” respectively.

Remark 12.1.1. Somebody asked what this notation stands for.
R stands for the real numbers.
P stands for the word “projective.” This word originates in “projective

geometry,” which is the study of how the geometry of our world behaves
when it’s projected onto (for example) a canvas, or our retina.

Sometimes, RP 1 is called the real projective line, and RP 2 is called the
real projective space.

Remark 12.1.2. Somebody asked if there is a “complex” version, say CP 1

and CP 2. There are such things. Recall that we have seen that RP 1 can be
written as the following quotient set:

{(x1, x2) ”= (0, 0)}/ ≥, (x1, x2) ≥ (xÕ
1, xÕ

2) ≈∆ x1 = txÕ
1 and x2 = txÕ

2 for some t ”= 0.

Well, we can now pretend that x1, x2 are complex number, and define a quo-
tient set using the exact same notation as above (with t now also a complex
number). This is a quotient of the space C◊C \ {(0, 0)}. Since C ≥= R2, this
is a quotient of the space R4 \ {(0, 0, 0, 0)}. We call this quotient CP 1.

It turns out that CP 1 is homeomorphic to the sphere, S2.

1
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12.2 The topology of RP 2

Today we’re going to study RP 2. It’s a great space.
Recall that we have defined a function

p : S2 æ RP 2

from the sphere to RP 2. It sends a point x œ S2 to the unique line L passing
through x and the origin.

p is a surjection because every line through the origin passes through
some point on the sphere.

p is not an injection. Indeed, every line through the origin passes through
two points on the sphere. Thus p is a two-to-one map, meaning that every
point in the codomain has a preimage of size two.

Remark 12.2.1. Fix a line L œ RP 2. Note that if x is a point in L fl S2,
then the point ≠x, defined by

x = (x1, x2, x3) =∆ ≠x = (≠x1, ≠x2, ≠x3)

is the other point in L fl S2. So we see that p≠1(L) = {x, ≠x}.
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Definition 12.2.2 (Quotient topology, I. This is from homework.). Let X
be a topological space. If p : X æ Y is a surjection, we topologize Y as
follows: A subset V µ Y is open if and only if p≠1(V ) is open in X.

On the other hand, we have:

Definition 12.2.3 (Quotient topology, II.). Let X be a topological space
and ≥ an equivalence relation on X. Let q : X æ X/ ≥ be the quotient
map—i.e., q(x) = [x]. We topologize X/ ≥ so that V µ X/ ≥ is open if and
only if q≠1(V ) is open.

Remark 12.2.4. Note that the second definition is a special case of the first,
because q : X æ X/ ≥ is always a surjection.

Now we put the two definitions together. Let p : X æ Y be a surjection.
Recall from last week that p defines an equivalence relation ≥ on X given by
x ≥ xÕ ≈∆ p(x) = p(xÕ), and that we have a commutative diagram

X
q

##

p // Y

X/ ≥ .

„
;;

Here, „ is a function given by „([x]) = p(x). That the diagram is commu-
tative means that p = „ ¶ q. Moreover, we also saw last week that „ is a
bijection.

If we give X/ ≥ the quotient topology (II), then there is a unique topology
on Y so that „ is not only a bijection, but a homeomorphism. This is the
topology for which V µ Y is open if and only if „≠1(V ) is open in X/ ≥.

Definition 12.2.5 (Quotient topology, III.). Let p : X æ Y be a surjection,
and let ≥ be the equivalence relation x ≥ xÕ ≈∆ p(x) = p(xÕ). Then we
topologize Y so that V µ Y is open if and only if „≠1(V ) is open in X/ ≥.

We leave the following for you to verify:

Proposition 12.2.6. The definitions I and III yield the same topology on
Y .

Definition 12.2.7. Let X be a topological space and let p : X æ Y be a
surjection. The topology of Definition I (or III) is called the quotient topology
on Y .
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Definition 12.2.8. Consider the surjection p : S2 æ RP 2 discussed above.
We topologize RP 2 using the quotient topology.

Remark 12.2.9. So we are using two of our “how to make a new space”
constructions to define RP 2. First, note that we have topologized S2 by the
subspace topology—R3 has a standard topology, and we give S2 the subspace
topology. Second, we have used the quotient space construction.

12.3 An open subset

I would like to better understand RP 2. So we’re going to try to start un-
derstanding subsets of RP 2 in terms of spaces I understand. Well, the only
space that is remotely familiar to me is R2. So can I construct functions from
RP 2 to R2, and perhaps vice versa, that will help me understand RP 2?

Here is a fun construction. Let L œ RP 2 be a line through the origin.
And fix a plane P3 given by the equation x3 = 1. Concretely,

P3 = {(x1, x2, x3) such that x3 = 1} µ R3.

Then, if L intersects P3, we have a unique intersection point y œ L fl P3. If
we call its coordinates y1, y2, y3, we know y3 = 1, so we may as well only
remember the pair (y1, y2). This yields an assignment

L ‘æ (y1, y2).
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That is, it seems we almost have a function from RP 2 to R2.
I say almost because not every line L œ RP 2 intersections P3. Indeed,

what if L is the line given by the x1 or the x2 axis? In general, if L is parallel
to the plane P3, then L never intersects P3, and we have no way of producing
the numbers (y1, y2).

So this geometric construction doesn’t produce a function from RP 2 to
R2, but it does produce a function from a subset of RP 2 to R2. Let’s give
this subset a name.
Notation 12.3.1. Let U3 µ RP 2 the set of those lines that intersect P3.

Then the above construction defines a function
j3 : U3 æ R2, L ‘æ (y1, y2)

where (y1, y2, 1) is the unique point in L fl P3.
Here is the big question of the day: Is U3 open?

12.4 Proving U3 is open
This is a great exercise in all the definitions.



6 LECTURE 12. REAL PROJECTIVE PLANE

12.4.1 Using the definition of quotient topology to re-
duce the problem to a subset of S2

By definition, U3 µ RP 2 is open if and only if its preimage in S2 is open (its
preimage under the map p : S2 æ RP 2).

Remember that p is the map sending a point x to the line passing through
x and the origin. As such, the preimage of U3 is the set of those x œ S2 such
that the line through x and the origin also passes through the plane P3.

But given x, the line through x and the origin intersects P3 if and only if
the coordinate x3 of x is non-zero. Thus, we find

p≠1(U3) = {x = (x1, x2, x3) œ S2 such that x3 ”= 0}.

Let us call this set V3.
Thus, to see whether U3 is open, we must test whether V3 is an open

subset of S2.

12.4.2 Using the definition of subset topology to re-
duce the problem to a subset of R3

Recall that S2 is given the subspace topology as a subspace of R3. By defini-
tion, a subset V µ S2 is open if and only if there exists an open W µ RR3

for which
V = W fl S2.

Just as an ‘-” proof requires you to produce a ” given an ‘, we must now
exhibit a W given a V to prove that V is open.

Our V in question is the set V3 µ S2 be the set of those x œ S2 whose x3
coordinate is non-zero. I claim V3 is open.

So what is the open set W µ R3?

Proposition 12.4.1. Let W µ RR3 denote the set of all elements x œ R3

for which x3 ”= 0. Then :
(1) W is open in R3.
(2) W fl S2 = V3.

Proof. We will omit the proof of (2). If (2) is not clear to you, just carefully
think about the definitions.
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To prove (1), it su�ces to prove that any x œ W is contained in some
open ball B(x, r) such that B(x, r) µ W .1

Well, given x œ W , we know that x has distance r = |x3| from the plane
{x3 = 0}. (This is otherwise known as the x1-x2 plane.) Thus any element
xÕ œ R3 of distance less than r is also contained in W . We conclude that
B(x, |x3|) µ W , so W is open.

Using the proposition, we conclude that V3 µ S2 is an open subset. Be-
cause V3 = p≠1(U3), we further conclude that U3 µ RP 2 is an open subset.

12.5 Another open subset
So we have produced an open subset U3 µ RP 2, and a function

j3 : U3 æ R2

which sends a line L intersecting the plane P3 = {x3 = 1} to the the first
two coordinates of the intersection point L fl P3.

Note that we did not need to choose the x3 coordinate. For example,
if we had chosen the x2 coordinate, we could intersect lines with the plane
P2 = {x2 = 1}. As before, we see that note every L œ RP 2 intersects P2; so
let U2 µ RP 2 be the set of those lines that intersect P2.

We then have a function

j2 : U2 æ R2

given by sending a line L to the pair (y1, y3) where (y1, 1, y3) is the intersection
point of L with P2. As before, we see that U2 is an open subset of RP 2.

12.6 A cover
Question: Do U2 and U3 cover RP 2? That is,

Does U2 fi U3 equal RP 2?

Parsing the definitions, we see that the union U2 fi U3 consists of those lines
L which pass through at least one of P2 or P3.

1
We saw in a previous class that a subset W of a metric space is open if and only if for

every x œ W , there is some open ball of positive radius containing x and contained in W .
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Figure 12.1: Open subsets V3 (in blue) and V2 (in green) of S2.

Then the answer to the question is no. For example, if U2 fi U3 were to
equal RP 2, then their preimages V2 = p≠1(U2) and V3 = p≠1(U3) would have
the property that V2 fiV3 = S2, because p is a surjection. But indeed, V2 fiV3
is missing exactly two points of the sphere: (±1, 0, 0).

To see this directly from the “set of lines” definitions, note that there
is a line, called the x1-axis, which does not pass through the plane P2, nor
the plane P3. Indeed, this is the only line that does not pass through either
of the planes. (Any other line would have a point with either the x2 or x3
coordinate being non-zero; in particular, such a line would intersect the plane
P2 (if x2 ”= 0) or P3 (if x3 ”= 0).)

That is, U2 fi U3 is equal to RP 2 with one point removed.
But I want all of RP 2.
Well, there is a notationally suggestive thing we can do: Let’s define

U1 µ RP 2 to consist of those lines that pass through the plane P1 = {x1 = 1}.
(This P1 is the plane consisting of those vectors whose x1 coordinate is equal
to 1.) As before, we see that U1 is open. It also clearly contains the x1-axis.
To summarize, we have:

Proposition 12.6.1. For i = 0, 1, or 2, let

Pi µ R3

denote the set of those points whose xith coordinate is equal to 1. We let

Ui µ RP 2

consist of those lines L such that L fl Pi is non-empty. Then
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1. each Ui is an open subset of RP 2. Moreover,

2. The union
U1 fi U2 fi U3

is equal to RP 2.

We will study these open sets more next time.
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Lecture 13

Understanding RP 2 more

Most of today was spent going over Homework 6. But it’s a long problem.
Solutions are posted online.

Recall that last time, we defined three open subsets

U1, U2, U3

of RP 2.
Here, Ui µ RP 2 is the collection of all lines L such that L intersects the

plane
Pi = {xi = 1}.

(This notation is shorthand for the set of all points x = (x1, x2, x3) for which
xi = 1.)

We saw last time that each Ui µ RP 2 is open, and that U1fiU2fiU3 = RP 2.

13.1 Each Ui is a copy of R2

Now, suppose that L œ U3. Then L intersects the plane P3 (i.e., the plane of
points whose 3rd coordinate is 1). So we can write

L fl P3 = {(y1, y2, 1)}

where (y1, y2, 1) is the unique point in the intersection L fl P3. This defines
for us a function

j3 : U3 æ R2, L ‘æ (y1, y2)
where (y1, y2) are the first two coordinates of the intersection point L fl P3.

1
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It turns out that j3 is continuous. Informally, this is because if we have
some open ball around (y1, y2), then its preimage will consist of all lines that
are close enough to L.

In fact, this is true for any of the Ui. More precisely, note that we have
a function

j1 : U1 æ R2, L ‘æ (y2, y3)

where (1, y2, y3) is the unique intersection point L fl P1. We also have a
function

j2 : U2 æ R2, L ‘æ (y1, y3).

More is true:

Proposition 13.1.1. For every i = 1, 2, 3 the function

ji : Ui æ R2

is a homeomorphism.

13.2 Paper mache
Now recall that homeomorphism is our notion of equivalence for topological
spaces. So, informally, each time we see a Ui, we can replace it with R2.

On the other hand, we know that RP 2 is a union of U1, U2 and U3; because
each Ui is homeomorphic to R2, this means that RP 2 is actually a union of
three spaces that are all copies of R2.

Informally, this means we can make RP 2 out of some sort of paper
mache—we put together three sheets of paper, but overlapping in some clever
way, to make RP 2.
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Lecture 14

Atlases and transition functions
for RP 2

14.1 The earth is a sphere

I asked a question: How do you know that the earth’s surface is (roughly) a
sphere?

We were given many great ideas; one of the most convincing was to go into
outer space and take a bunch of pictures. All others su�ered from being based
on taking local measurements, then assuming that some principle allowed us
to conclude that those local measurements were valid anywhere on earth.
The problem: We can’t know that something about Point A on earth is true
at Point B.

I claimed that the cheapest way to conclude that the earth is (roughly)
a sphere is as follows: Go get an atlas of the earth. Rip out all the pages.
Now glue the pages together along their overlaps. (For example, if Page 10
contains Lagos, and Page 33 does, too, then you should glue Page 10 and
Page 33 together along where Lagos is displayed.) You are making a very
complicated paper mache. And I claim that, in the end, you will end up with
something that is roughly spherical.

(There are some issues: You have to assume that the atlas is correct. And
indeed, to make a statement about something as large as the earth, you do
need to rely on the accuracy of others’ knowledge. Another issue is scaling;
the scale of Page 10 may not equal the scale of Page 13; so you may have to
find an atlas whose pages are made of rubber.)

1
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If you take each page and remove its boundary edges, each page is home-
omorphic to R2 (e.g., to an open rectangle). And each boundary-removed
page is then an open subset of the surface of the earth (i.e., of the sphere).
What you have just imagined is a procedure of finding a bunch of subsets
of S2 that are all homeomorphic to R2, and then writing S2 as a union of
these subsets. The way the subsets overlap tells you how to put together the
paper mache.

14.2 Paper mache for RP 2

So let’s do this for RP 2.
Recall from the last classes:

1. We define U1 µ RP 2 to be the set of lines that intersect the plane
P1 = {x = (x1, x2, x3) such that x1 = 1}. We have seen that this is an
open subset, and I have told you that it is homeomorphic to R2.

Likewise, we have open subsets U2 and U3 of RP 2. Each of these is also
homeomorphic to RP 2. We have also seen that

U1 fi U2 fi U3 = RP 2.

2. Moreover, the homeomorphisms from the Ui to R2 is given by functions

ji : Ui æ R2.

Let us recall how these were defined. Given a line L œ U1, so that L
intersects the plane P1, we can write the intersection point of L and P1
as follows:

(1, y2, y3).

The function j1 sends L to the pair of numbers (y2, y3).

Likewise,

j2(L) = (y1, y3) when L œ U2, and j3(L) = (y1, y2) when L œ U3.
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14.2.1
Now onto some new material.

Because U1 fi U2 fi U3 = RP 2, we see that the induced map

h : U1
·

U2
·

U3 æ RP 2

is a surjection. (Note that the domain here is the coproduct of U1, U2, and
U3.) In particular, there exists an equivalence relation ≥ on U1

‡
U2

‡
U3

such that we have an induced bijection

(U1
·

U2
·

U3)/ ≥≥= RP 2.

This equivalence relation is one we’ve seen before: We declare

L ≥ LÕ ≈∆ h(L) = h(LÕ).

(In general, when we have a surjection h : X æ Y , we can define a relation
x ≥ xÕ ≈∆ h(x) = h(xÕ) so that we have an induced bijection X/ ≥æ Y .)

Moreover, because each Ui µ RP 2 is open, we have:

Proposition 14.2.1. The induced map

(U1
·

U2
·

U3)/ ≥æ RP 2

is a homeomorphism.

Now, because each ji : Ui
≥= R2 is a homeomorphism, we can begin to

understand what RP 2 looks like using coordinates on R2. For example, by
using the three homeomorphisms, we have a single homeomorphism

j : U1
·

U2
·

U3 ≥= R2 ·
R2 ·

R2.

Thus we can try to understand the equivalence relation on the lefthandside
in terms of the righthand side. That is, the homeomorphism j induces an
equivalence relation on the right. What is this relation?

To see what it is, consider the functions

R2

j≠1
1
✏✏

R2

j≠1
2
✏✏

U1
ÿ1 // RP 2 U2.

ÿ2oo
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Then an element y œ R2 on the left is related to an element yÕ œ R2 on the
right if and only if

ÿ1 ¶ j≠1
1 (y) = ÿ2 ¶ j≠1

2 (yÕ).

I claim there is a formula now expressing y in terms of yÕ. To see this, note
that the above equality means that j≠1

1 (y) and j≠1
2 (yÕ) must describe the same

line (i.e., the same element in R2). But j≠1
1 takes the point y = (y2, y3) œ R2

and sends it to the line passing through

(1, y2, y3).

Likewise, j≠1
2 takes the point yÕ = (yÕ

1, yÕ
3) œ R2 and sends it to the line

passing through
(yÕ

1, 1, yÕ
3).

If these points are to be on the same line, then there must be a non-zero real
number t so that

t(1, y2, y3) = (yÕ
1, 1, yÕ

3).

That is,
t = yÕ

1, ty2 = 1, ty3 = yÕ
3.

From this, we quickly conclude that for the points (1, y2, y3) and (yÕ
1, 1, yÕ

3)
to be on the same line L, we must have

y2 = 1/yÕ
1, y3 = yÕ

3/yÕ
1.

Or, equivalently,
yÕ

1 = 1/y2, yÕ
3 = y3/y2.

So this gives part of the relation; we see that y and y’ are related if and only
if the above equations hold. (In particular, y2 must be non-zero for y to be
related to some yÕ, and yÕ

1 must be non-zero for yÕ to be related to some y.)
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Exam!

5
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Lecture 16

Closed sets and open covers

Class today will have three parts. As I mentioned last week, we’re starting
a proof bootcamp.

This means every day, you will see new definitions. Then you will spend
most of class trying to prove something using the new definitions.

16.1 Closed sets
Definition 16.1.1. Let X be a topological space. A subset A µ X is called
closed if and only if its complement is open.

I want you to prove the following in groups:

Proposition 16.1.2. Let (X,T) be a topological space. For this problem,
we let K denote the collection of closed subsets. Show the following are true:

1. ÿ, X œ K.

2. If A1, . . . , An œ K is a finite collection, then t
i=1,...,n Ai is in K.

3. For an arbitrary collection {A–}–œA of elements of K, we have that the
intersection u

–œA A– is also in K.

Proposition 16.1.3. Let f : X æ Y be a continuous map of topological
spaces. Show that if A µ Y is closed, then its preimage is closed.

Conversely, suppose that f : X æ Y is a function such that whenever
A µ Y is closed, its preimage is closed. Prove that f is continuous.

1
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Proposition 16.1.4. Let B µ X be an arbitrary subset. Show that there
exists a subset, B µ X, satisfying the following properties:

1. B µ B

2. B is closed.

3. Moreover, if C is any other closed subset of X containing B, then C
contains B.

Informally, this means that B is the “smallest” closed subset of X con-
taining B.

Definition 16.1.5 (For future use). B is called the closure of B.

Remark 16.1.6 (Motivation for closed sets). Note that the set of closed
sets of a space can automatically recover the set of open sets of a space.
(This is because K µ X is closed if and only if its complement is open.) If
you expound upon Proposition 16.1.2, you will see that you can equivalently
define a topological space through its closed sets, so long as the collection
K of closed sets of X satisfy all the properties in the proposition. It is then
an exercise to show that any such collection K determines a topology T (by
taking the opens to be complements of elements of K).

The next proposition tells you that you can also equivalently define the
notion of continuity through mentioning only closed sets.

One thing you can do freely with closed sets is take intersections, as you
saw in Proposition 16.1.2. This allows you to do constructions with closed
sets you can’t do with open sets. For example, one can convert any set into
a closed by taking its closure (which you saw in Proposition 16.1.4). This,
informally, gives you a “slightly larger” but closed subset.

In contrast, given some subset B µ X of a topological space, it is almost
impossible to construct a “smallest open set” containing B; you can rather
construct the “largest open set” contained in B, and this is called the interior
of B. Can you construct it?

16.2 Open covers
Definition 16.2.1. Let (X,TX) be a topological space. We say that a col-
lection {U–}–œA of subsets of X is a cover if t

–œA U– = X. We further say
this collection is an open cover if each U– is open.
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I want you to prove the following:

Proposition 16.2.2. Let {U–} be an open cover of X. Note there is a
function

p :
·

–œA

U– æ X.

Prove that the induced map

(
·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ).

Remark 16.2.3 (Motivation for open covers). Proposition 16.2.2 says that
you can reconstruct a space X from an open cover of X. This is something
special to open covers.

For example, given an arbitrary cover {A–}–œA, even if t
–œA A– = X, it

need not be true that Q

a
·

–œA

A–

R

b / ≥ æ X

is a homeomorphism. For example, you could take A = X and Ax = {x}.
Then the above map is a homeomorphism if and only if X has the discrete
topology.

16.3 The Mobius band in RP 2

In the exam I asked you to convince me there is a Möbius band inside the
union U1 fi U2 µ RP 2.

Recall that U1 fi U2 is homeomorphic to the following:

(R2 ·
R2)/ ≥

where the relation ≥ says y ≥ yÕ ≈∆
Y
_____]

_____[

y2 = 1/yÕ
1 and y3 = yÕ

3/y1, y is in the first copy of R2 while yÕ is in the second copy.
y = yÕ y and yÕ are both in the first copy of R2

yÕ = y y and yÕ are both in the second copy of R2

yÕ
2 = 1/y1 and yÕ

3 = y3/y1, y is in the second copy of R2 while yÕ is in the first copy.
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The relation looks more complicated than it needs to; if you are willing, you
can simply think of ≥ as the smallest equivalent relation possible containing
the first line above.

R2 = {(y2, y3)} R2 = {(yÕ
1, yÕ

3)}

Above is a picture of two copies of R2.

R2 R2

We have drawn (dashed) the lines y2 = 0 (in the lefthand copy of R2) and
the yÕ

1 = 0 (in the righthand copy of R2). I draw these because these points
are only related to themselves; they undergo no gluing.
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On the right we have drawn (a portion of) the horizontal line yÕ
3 = a for

some positive real number a. We have only drawn the portion where yÕ
1 > 0.

What points on the right are points on {yÕ
3 = a} related to? Well, we know

y ≥ yÕ ≈∆ y2 = 1/yÕ
1, y3 = yÕ

3/yÕ
1.

In other words, a point of the form (yÕ
1, yÕ

3) = (yÕ
1, 1) on the right is related

to a point of the form (y2, y3) = (1/yÕ
1, 1/yÕ

1) on the left. These are points
where the y2 and y3 coordinates are equal; i.e., this is some part of a line!
Let’s draw the portion where yÕ

1 > 0:

Note, importantly (see the white dot) that when the yÕ
1 coordinate shrinks

toward 0, the y2 coordinate on the right increases.
We can likewise draw how the ray yÕ

3 = ≠1, with yÕ
1 positive, is related to

a ray in the lefthand side, by reasoning that (yÕ
1, ≠1) on the right is related to

(1/yÕ
1, ≠1/yÕ

1) on the left. (Thus, points on this horizontal ray on the right,
are related to points on a line of slope -1 on the left.)

All told, we see that the shaded regions are related to each other as
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follows:

For reasons that will become clear later, let’s just remember the shaded
region BÕ on the right, and the shaded region B on the left:

B BÕ

Now I leave it to you to explore what happens when the yÕ
1 coordinate on

the righthand copy of R2 is negative, which we haven’t considered yet. I
claim you’ll get the following picture (where points on the shaded region are
related to each other in a way I want you to figure out):

Note importantly that though the yÕ
3 coordinates of the dots on the righthand

side were negative, the y3 coordinate of the related points on the righthand
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side are positive! Now consider the regions A and AÕ indicated below:

A AÕ

For your convenience, let me re-draw the regions A, B µ R2 and AÕ, BÕ µ R2:

B BÕA AÕ

I want to emphasize that AÕ and BÕ do not touch; they share no intersection!
(The dashed line is important.)

So finally I am ready to draw the Mobius band inside of U1 fiU2. Consider
the regions C and C Õ below:

BA C C Õ

For example, C Õ contains both AÕ and BÕ, and a little bit more–it contains
some points with yÕ

1 = 0, for example.
While C is a subset of (the left copy of) R2, and C Õ is a subset of (the

right copy of) R2, they are mapped to a U1 fi U2 in a way such that they
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overlap along the arrowed edges. The overlap is interesting; as indicated, the
left edge of C Õ is glued to the left edge of C in a way that “flips” orientation.

C C Õ

Now I leave it to you to glue C and C Õ together along the edges, as indicated;
you wil get a Mobius strip.

Proof of Propositions
Proof of Proposition 16.1.2. Note that in this problem, given A µ X, the
complement of A is the complement of A in X. That is, if AC denotes the
complement, we have

AC = {x œ X such that x ”œ A.}.

1. To show the empty set is closed, we must show its complement is open.
We know ÿC = X, and by the definition of topological space, we know X is
open. This shows that the empty set is closed.

To show that X is closed, we must show that its complement is open. We
know XC = ÿ, and the empty set is always open (by definition of topological
space). Thsi shows that X is closed.

2. Since each Ai is closed, we know AC
i is open for every i = 1, . . . , n. By

DeMorgan’s Laws, we have

(
€

i=1,...,n

Ai)C =
‹

i=1,...,n

(AC
i ).

The righthand side is a finite intersection open sets. Hence it is open (by
definition of topological space). Because (t

i=1,...,n Ai)C is open, we conclude
that t

i=1,...,n Ai is closed (by definition of closed set). This finishes the proof.
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3. Again by DeMorgan’s Laws, we have

(
‹

–œA

A–)C =
€

–œA

(AC
– ).

Each AC
– is open because each A– is closed; thus the righthand side is a union

of open sets. Thus the righthand side is open (by definition of topological
space). This shows that (u

–œA A–)C is open, which means u
–œA A– is closed

(by definition of closed set).

Proof of Proposition 16.1.3. Let A µ Y be closed. Then AC is open. More-
over,

f≠1(AC) = f≠1(A)C .

(To see this, you need to exhibit each set as a subset of the other. Well, x is
in the lefthand side if f(x) ”œ A. In particular, x ”œ f≠1(A). Likewise, if x is
in the righthand side, then x ”œ f≠1(A), so f(x) ”œ A, meaning x œ f≠1(AC).)

And the lefthand side is open by definition of continuous map. Thus
f≠1(A)C is open, meaning f≠1(A) is closed.

Proof of Proposition 16.1.4. Omitted until next time.

Proof of Proposition 16.2.2. Let us recall the definition of the disjoint union‡
–,A U–—this is the set of all pairs (x, –) where – œ A and x œ U–. Then

the function p is given by

p :
·

–œA

U– æ X, (x, –) ‘æ x.

That is, p(x, –) = x.
Because {U–} is a cover of X, for every x œ X, there is some – such

that x œ U–. In particular, for every x œ X, there is some (x, –) such that
p(x) = x. This shows that p is a surjection.

In a previous lecture, we showed that whenever p is a surjection, then the
induced function

domain of p/ ≥ æ codomain of p

is a bijection if ≥ is defined by x ≥ xÕ ≈∆ p(x) = p(xÕ). This is exactly
the equivalence relation that we are taking, so we conclude that the induced
map

f : (
·

–œA

U–)/ ≥ æ X
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is a bijection. Note that we have now given this map a name: f .
First let’s show f is continuous. In homework you showed that f is

continuous if and only if p is. (A map from the quotient is continuous if and
only if the its composition with the projection map is.) So let us show p is
continuous. This means we must show that if V µ X is an open subset, then
p≠1(V ) is open. By definition of coproduct topology, p≠1(V ) is open if and
only if

p≠1(V ) fl U–

is open for every – œ A. So let’s prove it. First, we compute:

p≠1(V ) fl U– = { x œ U– such that p(x) œ V } (16.3.0.1)
= { x œ U– such that x œ V (16.3.0.2)
= V fl U–. (16.3.0.3)

Because V µ X is open and U– µ X is open, their (finite) intersection is
open. This shows that p≠1(V ) fl U– is open for every – œ A, and hence that
p≠1(V ) is open. This shows p is continuous. Thus f is continuous.

Now we must show that the inverse map

g : X æ (
·

–

U–)/ ≥

is continuous. For this, it su�ces to show that if a subset V in the codomain
is open, then g≠1(V ) = f(V ) is open. Well, something in the codomain is
open if and only if its preimage under the quotient map is open (by definition
of quotient topology). Thus, a subset V of the codomain is open if and only
if V is the image of some open subset

Ṽ µ
·

–

U–.

Again by definition of coproduct topology, Ṽ then has the property that
Ṽ fi U– is open for every –. But then we have

f(V ) = p(Ṽ ) = p(
€

–

V fl U–) =
€

–

p(V fl U–).

For every –, we know V fl U– is open an open subset of X (because it is a
finite intersection of open sets), so p(V fl U–) = V fl U– is an open subset of
X. In other words, the rightmost term in the above string of equalities is a
union of open sets, and is hence open (by definition of topology). This shows
f(V ) is open, which completes the proof.



Lecture 17

Open covers and subcovers

Last time you began thinking about open covers. Let me remind you:

Definition 17.0.1 (Definition 16.2.1). Let (X,TX) be a topological space,
and fix a set A. Fix a function U : A æ TX . For every – œ A, we will write
U– for the value of this function on –. We say that U is an open cover if

€

–œA

U– = X.

Remark 17.0.2. Note that it seems I have changed the definition!

Exercise 17.0.3 (Do only if you or your group decides to.). Show that this
definition is equivalent to the old one: “ We say that a collection {U–}–œA of
subsets of X is a cover if t

–œA U– = X. We further say this collection is an
open cover if each U– is open.”

17.1 Subcovers
Definition 17.1.1. Let U = {U–}–œA be an open cover of X.1 A collection
{U—}—œB is called a subcover of U if

1. t
—œB U— = X, and

2. For every — œ B, there exists – œ A such that U— = U–.
1
Note that I am not explicitly saying that X is a topological space here; it is to be

inferred from context, because I am talking about an “open” cover of X—this only makes

sense if I know what the open sets of X are!

11
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Exercise 17.1.2 (Do only if you or your group decides to.). Let U be an
open cover. Then a subcover of U is the same data as a choice of subset
B µ A such that the composition

B æ A æ T

is an open cover of X.

Prove the following:

Proposition 17.1.3. Let A = X ◊ R>0 be the set of pairs (x, r) where
x œ X and r is a positive real number. Let (X, d) be a metric space, and
equip it with the induced topology.

(i) The collection
U = {Ball(x, r)}(x,r)œA

is an open cover of X.
(ii) Now let B µ A denote the set of pairs (x, r) where x œ x and r is a

positive rational number. (So B = X ◊ Q.) Then {U—}—œB is a subcover of
U.

17.2 From last time
If you didn’t have a chance last time, I want you to tackle the following:

17.2.1 Preimages of closed sets are closed
Proposition 17.2.1 (Proposition 16.1.3.). Let f : X æ Y be a continuous
map of topological spaces. If A µ Y is closed, then its preimage is closed.

Conversely, suppose that f : X æ Y is a function such that whenever
A µ Y is closed, its preimage is closed. Then f is continuous.

17.2.2 Open covers can reconstruct the space
Proposition 17.2.2 (Proposition 16.2.2.). Let {U–} be an open cover of X.
Note there is a function

p :
·

–œA

U– æ X.
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Then the induced map
(

·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ).

17.2.3 Closures
Proposition 17.2.3 (Proposition 16.1.4.). Let B µ X be an arbitrary sub-
set. There exists a subset, B µ X, satisfying the following properties:

1. B µ B

2. B is closed.

3. Moreover, if C is any other closed subset of X containing B, then C
contains B.

Informally, this means that B is the “smallest” closed subset of X con-
taining B.

17.2.4 A Mobius band in RP 2

Convince yourselves that there is a Möbius band inside the union U1 fi U2 µ
RP 2.

17.3 Summary of this week’s knowledge

17.3.1 Closed subsets
I now expect you to know the following about closed subsets:

1. The definition of a closed subset (of a topological space).

2. That ÿ and X are both closed (as subsets of the topological space X).

3. That the intersection of arbitrarily many closed subsets is a closed
subset.

4. That the union of finitely many closed subsets is a closed subset.
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5. That f : X æ Y is continuous i� the preimage of any closed subset is
closed.

6. You should be able to give examples of closed subsets (especially be-
cause I expect you to give examples of open subsets!).

7. (We may not have had time to go over closures, so I don’t expect you
to know about them yet.)

17.3.2 Open covers and subcovers
I expect you to know the following about open covers:

1. Definition of cover.

2. Definition of open cover.

3. Definition of a subcover (of an open cover).

4. That given an open cover, you can reconstruct the space X you are
covering. (You should know the construction by heart, even if you
cannot prove that the construction is homeomorphic to X.)

5. You should be able to give me at least one example of an open cover
and a subcover.

17.3.3 Compactness
On homework, you will also learn about compact spaces. I expect you to
know the following:

1. Definition of compact topological space.

2. That if f : X æ Y is continuous, then any compact subspace of X has
compact image.



Lecture 18

Solutions to polynomial
equations are closed

18.0.1 Open covers can reconstruct the space
If you haven’t completed the proof of this proposition, I want you to keep
working on it. It will give you practice with coproducts, quotients, the quo-
tient topology, and homeomorphisms:
Proposition 18.0.1 (Proposition 16.2.2.). Let {U–} be an open cover of X.
Note there is a function

p :
·

–œA

U– æ X.

Then the induced map
(

·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ)).

18.1 Familiar (?) examples of continuous func-
tions

Going forward, you may rely on the following:
Exercise 18.1.1 (Do only if you want to.). Show that addition,

R ◊ R æ R, (x1, x2) ‘æ x1 + x2

15
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is continuous. (Here, R is given the topology induced by the standard metric.)

Exercise 18.1.2 (Do only if you want to.). Show that the multiplication
function

R ◊ R æ R, (x1, x2) ‘æ x1x2

is continuous. (Here, R is given the topology induced by the standard metric.)

Exercise 18.1.3 (Do only if you want to.). Show that the following functions
are continuous:

1. Fix a real number a œ R. The constant function

R æ R, x ‘æ a.

2. Fix two continuous functions f : R æ R and g : R æ R. The function

R æ R ◊ R, x ‘æ (f(x), g(x)).

18.2 Polynomial functions are continuous
Exercise 18.2.1 (Do only if you want to.). (You will need to rely on the
exercises above. If you want, you can try proving the following propositions
without proving the exercises yourself, but taking their truth for granted.)

1. Any polynomial function in one variable is continuous. That is, if one
has a finite collection of real numbers a0, . . . , an, the function

p : R æ R, x ‘æ a0 + a1x + a2x
2 + . . . anxn =

nÿ

i=0
aix

i

is continuous. (Hint: Induction on n.)

2. Any polynomial function in finitely many variables is continuous. That
is, if we are given a real number ai1,...,im for some finite collection of m-
tuples of non-negative integers i1, . . . , im, the function

Rm æ R, (x1, . . . , xm) ‘æ
ÿ

i1,...,im

ai1,...,imxi1
1 . . . xim

m

is continuous. (Hint: A lot of induction.)
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18.3 Some closed subsets of Rn

Prove the following:

Proposition 18.3.1. 1. Fix a real number b œ R. Then the (singleton)
set {b} µ R is closed.

2. For every m Ø 1, the (m ≠ 1)-dimensional sphere

Sm≠1 µ Rm

is a closed subset of Rm. (Recall that

Sm≠1 := {(x1, . . . , xm) such that
mÿ

i=1
x2

i = 1}.

As a hint, you can use the fact that for continuous functions, preimages
of closed subsets are closed.)

3. More generally, given any polynomial p in m variables, the set

{x such that p(x) = 0} µ Rm

is a closed subset.

4. Even more generally, given a finite collection of polynomials p1, . . . , pk

in m variables, the set

{x such that pi(x) = 0 for all i} µ Rm

is a closed subset.

5. Even more generally, given an arbitrary collection of polynomials {p–}–œA

in m variables, the set

{x such that p–(x) = 0 for every – œ A} µ Rm

is a closed subset.

Prove the following:
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Proposition 18.3.2. 1. Fix a real number a. Then the set

(≠Œ, a] µ R

is closed (under the standard topology).

2. Fix a real number a and let p : Rm æ R be a polynomial function in
m variables. Then the set

{x œ Rm such that p(x) Æ a }

is closed. If you need to, do the same for Ø a rather than Æ a.

18.4 The Heine-Borel Theorem
If you have gotten this far, you can go onto facts that will be useful and that
we will cover later.

Definition 18.4.1. A subset A µ R is called bounded if there exists some
positive real number a œ R for which

A µ (≠a, a).

More generally, given a subset A µ Rn, we say that A is bounded if there
exists some positive real number a œ R for which

A µ Ball(0; a).

Prove:

Theorem 18.4.2 (Heine-Borel Theorem). A subset A µ Rn is compact if
and only if it is both closed and bounded.



Lecture 19

Closed balls in metric spaces;
Heine-Borel

19.1 The metric function is continuous
Proposition 19.1.1. Let d : X ◊ X æ R be a metric. Endow X with the
metric topology (i.e., the topology induced by the metric) and endow X ◊ X
with the product topology. R has the standard topology.

1. Show that d is continuous.

2. For any x0 œ X, show that the function

d(x0, ≠) : X æ R, x ‘æ d(x0, x)

is continuous.

Proposition 19.1.2. Let d : X ◊ X æ R be a metric. Endow X with the
metric topology (i.e., the topology induced by the metric) and endow X ◊ X
with the product topology.

1. Fix a real number a œ R. For every x0 œ X, show that

{ x œ X such that d(x0, x) = a }

is a closed subset of X.

19
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2. Fix a real number a œ R. For every x0 œ X, show that
{ x œ X such that d(x0, x) Æ a }

is a closed subset of X. This is called the closed ball of radius a centered
at x0.

19.2 Proving Heine-Borel
Definition 19.2.1 (Definition 18.4.1). A subset A µ R is called bounded if
there exists some positive real number a œ R for which

A µ (≠a, a).
More generally, given a subset A µ Rn, we say that A is bounded if there
exists some positive real number a œ R for which

A µ Ball(0; a).
Prove:

Theorem 19.2.2 (Heine-Borel Theorem, 18.4.2.). A subset A µ Rn is com-
pact if and only if it is both closed and bounded.

19.3 Summary of this week’s knowledge

19.3.1 Examples of closed subsets, and polynomials
1. Polynomials are continuous functions

2. Solutions to polynomials are closed subsets

3. Solutions to inequalities defined by polynomials are closed subsets

4. In a metric space, closed balls are closed subsets

19.3.2 Closed and bounded subsets
1. You should know the Heine-Borel theorem, even if you don’t know its

proof.

2. You should be able to give examples of closed and bounded subsets of
Rn.
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Lecture 20

Proving the Heine-Borel
Theorem

Recall the following definitions:

Definition 20.0.1. A topological space is called compact if every open cover
of the space admits a finite subcover.

Definition 20.0.2. A subset of a topological space X is called closed if its
complement is open.

Definition 20.0.3. A subset A of Rn is called bounded if there is some r œ R
such that

A µ Ball(0; r).

(That is, A is contained in a ball of radius r centered at the origin.)

Today, we will prove:

Theorem 20.0.4 (Heine-Borel theorem). Fix A µ Rn. Then A is compact
if and only if it is closed and bounded.

We will see pay-o�s next class.

20.1 Just take these for granted
Here are a few lemmas. You should take them for granted; no need to prove
them. Just read them and try to understand them.

1
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Lemma 20.1.1. Fix two real numbers a, b such that a Æ b. Then the interval
[a, b] is compact. (We endow [a, b] µ R with the subspace topology.)

Lemma 20.1.2. Let X and Y be compact. Then X ◊ Y is compact.

Lemma 20.1.3 (You proved this in homework). Let X and Y be topological
spaces.

1. Let X be compact. Then any closed subset A µ X is compact.

2. Let Y be Hausdor�. Then any compact subset B µ Y is closed.

20.2 A proof of Heine-Borel
In your groups, read the following proof of the Heine-Borel theorem. Speak
out when you do not understand some portion of the proof. Make sure you
understand every step.

Proof. Fix n.
(Compact =∆ closed and bounded.) To begin, define a collection of

open balls as follows:

Wr = Ball(0; r) µ Rn, r > 0.

Note that the collection {Wr}r>0 forms an open cover of Rn.
Now let A µ Rn be compact, and define

Ur = Wr fl A.

Then the collection {Ur} forms an open cover of A. By compactness of A,
there is a finite subcover, meaning there is a finite collection r1, . . . , rn such
that €

iœ1,...,n

Uri = A.

But if r > rÕ, clearly Ur ∏ UrÕ , so letting R = max{r1, . . . , rn}, we have that
A µ WR. This shows A is bounded.

To show A is closed, we simply cite Lemma 20.1.3(2). (Note that Rn is
Hausdor� because it is a metric space.)
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(Closed and bounded =∆ compact.) Now suppose A µ Rn is closed
and bounded. Well, because A is bounded, there is some real number r so
that A µ Ball(0; r). In particular, A is contained in the square

[≠r, r] ◊ . . . ◊ [≠r, r] µ Rn.

Here, the lefthand side consists of those points

(x1, . . . , xn)

such that xi œ [≠r, r] for all i. But the interval [≠r, r] is compact by
Lemma 20.1.1; so by Lemma 20.1.2, the direct product

[≠r, r] ◊ . . . ◊ [≠r, r]

is also compact. Moreover, we have

A µ [≠r, r] ◊ . . . ◊ [≠r, r] µ Rn

and because A is closed in Rn, we know that A is closed in [≠r, r]◊ . . . [≠r, r].
Invoking Lemma 20.1.3(1), we conclude that A is compact.

Just to make sure you understood every element of the proof:

1. We used induction at some point. Where?

2. At some point we had to verify that the subspace topology of [≠r, r] ◊
. . . ◊ [≠r, r] µ Rn equals the product topology of [≠r, r] ◊ . . . ◊ [≠r, r].
Where was the first point we needed to do this?

20.3 Another proof to verify
Remark 20.3.1. We will not give a Proof of Lemma 20.1.1; it is proven in
most analysis classes.

Make sure you understand every step. This proof should make for good
group discussion.
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Proof of Lemma 20.1.2. (I) Let U = {U–}–œA be an open cover of X ◊ Y .
Before we treat a more general case, let us assume that every element of U
is of the form V– ◊ W–, where V– µ X is open and W– µ Y is open.

For every x œ X, let us consider the subset {x}◊Y . By definition of cover,
for every element (x, y) œ {a}◊Y , there is some – such that (x, y) œ V–◊W–.
So choose some collection Ax µ A so that

€

–œAx

V– ◊ W– ∏ {x} ◊ Y.

Then the collection {W–}–œAx is an open cover of Y . Because Y is compact,
there is some finite subcover—i.e., some finite subset Fx µ Ax so that

€

–œFx

W– = Y.

Now consider the finite intersection
‹

–œFx

V–.

This is an open subset of X, and we call it Vx. Note that x œ Vx, and
€

–œFx

Vx ◊ W– ∏ {x} ◊ Y. (20.3.0.1)

In this way, for every x œ X, we obtain an open subset Vx µ X such that
x œ Vx, and such that there exists some finite subset Fx µ A for which
(20.3.0.1) holds.

The collection {Vx}xœX forms an open cover of X. By compactness of X,
there exists a finite subcover. Hence there is some finite collection of points
x1, . . . , xn œ X so that

Vx1 fi . . . fi Vxn = X.

It follows that €

x1,...,xn

€

–œFxi

Vxi ◊ W– = X ◊ Y.

Note that the collection {(xi, –) such that – œ Fxi } is a finite set, while
Vxi µ V–. Hence we have found a finite subcover:

{V– ◊ W–}{(xi,–) such that – œ Fxi }
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(II) Now, for the general case. If U = {U—} is an arbitrary open cover of
X ◊ Y , for every —, let us choose a set C— and open subsets of X and of Y
so that

U— =
€

“œC—

V“ ◊ W“. (20.3.0.2)

Let A = t
—œB C—; then we have an open cover

{V“ ◊ W“}“œA.

We produced a finite subcover of such a collection in (I). So let AÕ µ A be
the finite subset for which

{V“ ◊ W“}“œAÕ

is an open cover of X ◊ Y . For every “ œ AÕ, there exists some —(“) œ B for
which

V“ ◊ W“ µ U—(“)

by design (20.3.0.2). Thus we find

X ◊ Y µ
€

“œAÕ
U“ ◊ W“ µ

€

—(“)
U—(“) µ X ◊ Y.

In other words, the collection
{U—(“)}

is a finite subcover of U.
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Proofs of Propositions and
selected exercises (Lectures 16 -
20)

Proposition 16.1.2 Let (X,T) be a topological space. For this problem, we
let K denote the collection of closed subsets. Show the following are true:

1. ÿ, X œ K.

2. If A1, . . . , An œ K is a finite collection, then t
i=1,...,n Ai is in K.

3. For an arbitrary collection {A–}–œA of elements of K, we have that the
intersection u

–œA A– is also in K.

Proof of Proposition 16.1.2. Note that in this problem, given A µ X, the
complement of A is the complement of A in X. That is, if AC denotes the
complement, we have

AC = {x œ X such that x ”œ A.}.

1. To show the empty set is closed, we must show its complement is open.
We know ÿC = X, and by the definition of topological space, we know X is
open. This shows that the empty set is closed.

To show that X is closed, we must show that its complement is open. We
know XC = ÿ, and the empty set is always open (by definition of topological
space). Thsi shows that X is closed.

2. Since each Ai is closed, we know AC
i is open for every i = 1, . . . , n. By

DeMorgan’s Laws, we have

(
€

i=1,...,n

Ai)C =
‹

i=1,...,n

(AC
i ).

1
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The righthand side is a finite intersection open sets. Hence it is open (by
definition of topological space). Because (t

i=1,...,n Ai)C is open, we conclude
that t

i=1,...,n Ai is closed (by definition of closed set). This finishes the proof.
3. Again by DeMorgan’s Laws, we have

(
‹

–œA

A–)C =
€

–œA

(AC
– ).

Each AC
– is open because each A– is closed; thus the righthand side is a union

of open sets. Thus the righthand side is open (by definition of topological
space). This shows that (u

–œA A–)C is open, which means u
–œA A– is closed

(by definition of closed set).

Proposition 16.1.3 Let f : X æ Y be a continuous map of topological
spaces. Show that if A µ Y is closed, then its preimage is closed.

Conversely, suppose that f : X æ Y is a function such that whenever
A µ Y is closed, its preimage is closed. Prove that f is continuous.

Proof of Proposition 16.1.3. Let A µ Y be closed. Then AC is open. More-
over,

f≠1(AC) = f≠1(A)C .

(To see this, you need to exhibit each set as a subset of the other. Well, x is
in the lefthand side if f(x) ”œ A. In particular, x ”œ f≠1(A). Likewise, if x is
in the righthand side, then x ”œ f≠1(A), so f(x) ”œ A, meaning x œ f≠1(AC).)

And the lefthand side is open by definition of continuous map. Thus
f≠1(A)C is open, meaning f≠1(A) is closed.

Proposition 16.1.4. Let B µ X be an arbitrary subset. Show that
there exists a subset, B µ X, satisfying the following properties:

1. B µ B

2. B is closed.

3. Moreover, if C is any other closed subset of X containing B, then C
contains B.

Proof of Proposition 16.1.4. Given B, let KB denote the collection of all sub-
sets K µ X for which (i) K is closed, and (ii) K contains B. Note that KB

is non-empty because it contains X. Now we define

B :=
‹

KœKB

K.
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We see B is closed because arbitrary intersections of closed sets are closed
(proving 2.). We also see that B contains B because B is contained in every
K œ KB (proving 1). Finally, if C is any other closed subset of X containing
B, then C œ KB, so in particular, C ∏ u

KœKB
K (proving 3).

Proposition 16.2.2. Let {U–} be an open cover of X. Note there is a
function

p :
·

–œA

U– æ X.

Prove that the induced map

(
·

–œA

U–)/ ≥ æ X

is a homeomorphism. (Here, the equivalence relation ≥ is the one for which
x ≥ xÕ ≈∆ p(x) = p(xÕ).

Proof of Proposition 16.2.2. Let us recall the definition of the disjoint union‡
–,A U–—this is the set of all pairs (x, –) where – œ A and x œ U–. Then

the function p is given by

p :
·

–œA

U– æ X, (x, –) ‘æ x.

That is, p(x, –) = x.
Because {U–} is a cover of X, for every x œ X, there is some – such

that x œ U–. In particular, for every x œ X, there is some (x, –) such that
p(x) = x. This shows that p is a surjection.

In a previous lecture, we showed that whenever p is a surjection, then the
induced function

domain of p/ ≥ æ codomain of p

is a bijection if ≥ is defined by x ≥ xÕ ≈∆ p(x) = p(xÕ). This is exactly
the equivalence relation that we are taking, so we conclude that the induced
map

f : (
·

–œA

U–)/ ≥ æ X

is a bijection. Note that we have now given this map a name: f .
First let’s show f is continuous. In homework you showed that f is

continuous if and only if p is. (A map from the quotient is continuous if and
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only if the its composition with the projection map is.) So let us show p is
continuous. This means we must show that if V µ X is an open subset, then
p≠1(V ) is open. By definition of coproduct topology, p≠1(V ) is open if and
only if

p≠1(V ) fl U–

is open for every – œ A. So let’s prove it. First, we compute:

p≠1(V ) fl U– = { x œ U– such that p(x) œ V }
= { x œ U– such that x œ V

= V fl U–.

Because V µ X is open and U– µ X is open, their (finite) intersection is
open. This shows that p≠1(V ) fl U– is open for every – œ A, and hence that
p≠1(V ) is open. This shows p is continuous. Thus f is continuous.

Now we must show that the inverse map

g : X æ (
·

–

U–)/ ≥

is continuous. For this, it su�ces to show that if a subset V in the codomain
is open, then g≠1(V ) = f(V ) is open. Well, something in the codomain is
open if and only if its preimage under the quotient map is open (by definition
of quotient topology). Thus, a subset V of the codomain is open if and only
if V is the image of some open subset

Ṽ µ
·

–

U–.

Again by definition of coproduct topology, Ṽ then has the property that
Ṽ fi U– is open for every –. But then we have

f(V ) = p(Ṽ ) = p(
€

–

V fl U–) =
€

–

p(V fl U–).

For every –, we know V fl U– is open an open subset of X (because it is a
finite intersection of open sets), so p(V fl U–) = V fl U– is an open subset of
X. In other words, the rightmost term in the above string of equalities is a
union of open sets, and is hence open (by definition of topology). This shows
f(V ) is open, which completes the proof.
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Proposition 17.1.3 Let A = X ◊ R>0 be the set of pairs (x, r) where
x œ X and r is a positive real number. Let (X, d) be a metric space, and
equip it with the induced topology.

(i) The collection
U = {Ball(x, r)}(x,r)œA

is an open cover of X.
(ii) Now let B µ A denote the set of pairs (x, r) where x œ x and r is a

positive rational number. (So B = X ◊ Q.) Then {U—}—œB is a subcover of
U.

Proof of 17.1.3. (i) By definition of metric topology (i.e., the topology in-
duced by the metric), every Ball(x, r) is open. Moreover, for ever x œ X,
clearly x œ Ball(x, r) for any r > 0, so we conclude X µ t

(x,r)œA Ball(x, r).
On the other hand, the union t

(x,r)œA is clearly a subset of X, being a union
of subsets of X. This proves that U is an open cover.

(ii) There is a typo; B does not equal X ◊Q, but it equals X ◊Q>0—i.e.,
X times the set of positive rational numbers. Regardless, for any rational
positive number r and any x œ X, we have that x œ Ball(x, r), so we again
have that X = t

(x,r)œB Ball(x, r). This proves the claim.

Exercise 17.0.3 Show that this definition is equivalent to the old one: “
We say that a collection {U–}–œA of subsets of X is a cover if t

–œA U– = X.
We further say this collection is an open cover if each U– is open.”

Solution to Exercise 17.0.3. The notation {U–}–œA means that we have some
set A, and for every – œ A, we have specified some open subset U– µ X.
That is the same information as giving a function from A to T. And of
course, if U– œ T, it is open by definition.

The “cover” part of the definitions are identical, so there is nothing to
check there.

Exercise 17.1.2 Let U be an open cover. Then a subcover of U is the
same data as a choice of subset B µ A such that the composition

B æ A æ T

is an open cover of X.
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Solution to Exercise 17.1.2. As stated, the exercise isn’t quite correct; we’ll
see why. Suppose you have an open cover {U–}–œA.

The first definition (17.1.1) says {U—}—œB is a subcover if (i) if the uniont
—œB U— is equal to X, (ii) for every —, there is an – so that U– = U—.

The second definition (17.1.2) is identical for (i). Above, (ii) says we can
find a function i : B æ A so that Ui(—) = U–.

Exercise 18.1.1 Show that addition,

R ◊ R æ R, (x1, x2) ‘æ x1 + x2

is continuous. (Here, R is given the topology induced by the standard metric.)

Proof of 18.1.1. For notation’s sake, let’s call the addition function f , so
that f(x1, x2) = x1 + x2. We will use the ‘-” criterion to prove that f is
continuous.

Fix x = (a, b) œ R2 and fix ‘ > 0. Then

U := f≠1((a + b ≠ ‘, a + b + ‘))

is the region in R2 contained (strictly) between the two lines x1+x2 = a+b≠‘
and x1 + x2 = a + b + ‘. We must now find ” so that the open ball of radius
” around (a, b) is contained in U .

For this let us use some geometry. Clearly, the open diamond/rhombus
of total width 2‘ and total height 2‘, centered at (a, b), is contained in U .

•(a,b)

In turn, the open ball of radius
Ò

‘/2 is contained in this open rhombus.
Thus setting ” =

Ò
‘/2, we are finished.
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Exercise 18.1.2 Show that the multiplication function

R ◊ R æ R, (x1, x2) ‘æ x1x2

is continuous. (Here, R is given the topology induced by the standard metric.)

Proof of 18.1.2. Fix a point (a, b) œ R2. The note that for any d œ R, we
have that

(a + d)(b + d) = ab + (b + a)d + d2.

And in particular,

dRstd
(ab, (a + d)(b + d)) = |(b + a)d + d2| Æ |b + a||d| + |d|2.

Note that given ‘ > 0, the sum |b + a||d| + |d|2 is less than ‘ if each term of
the sum is less than ‘/2—that is, if

|b + a||d| < ‘/2 and |d|2 < ‘/2.

So let ” be any positive real number such that

” < min{‘/2(|b + a|),
Ò

‘/2}.

Then we are finished.

Exercise 18.1.3 Show that the following functions are continuous:

1. Fix a real number a œ R. The constant function

R æ R, x ‘æ a.

2. Fix two continuous functions f : R æ R and g : R æ R. The function

R æ R ◊ R, x ‘æ (f(x), g(x)).

Proof of 18.1.3. 1. Given any ‘, any ” will do.
2. You’ve shown this in your homework for metric spaces. More generally,

let W, X, Y be topological spaces, and fix two continuous function f : W æ X
and g : W æ Y . We will show that h : W æ X ◊ Y, h(w) := ((f(w), g(w))),
is continuous.
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Let A µ X ◊ Y be open. By definition (of product topology),

A =
€

–œA

U– ◊ V–

for some set A, and where U– µ X and V– µ Y are open. Note that

h≠1(U– ◊ V–) = f≠1(U–) fl g≠1(V–).

Because f and g are continuous, we see that h≠1(U– ◊ V–) is thus an inter-
section of two open sets—thus, h≠1(U– ◊ V–) is open. We conclude that

h≠1(W ) =
€

–œA

h≠1(U– ◊ V–)

so h≠1(W ) is an open subset of X (being a union of open subsets). This
concludes the proof.

Exercise 18.2.1 (You will need to rely on the exercises above. If you
want, you can try proving the following propositions without proving the
exercises yourself, but taking their truth for granted.)

1. Any polynomial function in one variable is continuous. That is, if one
has a finite collection of real numbers a0, . . . , an, the function

p : R æ R, x ‘æ a0 + a1x + a2x
2 + . . . anxn =

nÿ

i=0
aix

i

is continuous. (Hint: Induction on n.)

2. Any polynomial function in finitely many variables is continuous. That
is, if we are given a real number ai1,...,im for some finite collection of m-
tuples of non-negative integers i1, . . . , im, the function

Rm æ R, (x1, . . . , xm) ‘æ
ÿ

i1,...,im

ai1,...,imxi1
1 . . . xim

m

is continuous. (Hint: A lot of induction.)

Proof of 18.2.1. 1. First, let us prove that the function fn : x ‘æ xn is
continuous. We will perform induction on the degree n. For n = 1 this
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is obvious. For n = 2, we note that fn(x) = f1(x) · fn≠1(x). This is the
composition

R (f1,fn≠1)≠≠≠≠≠æ R ◊ R multiplication≠≠≠≠≠≠≠æ R.

The second arrow is continuous by Exercise 18.1.2. the first arrow is con-
tinuous by Exercise 18.1.32 and by induction. Because the composition of
continuous functions is continuous, we conclude that fn is continuous given
that fn≠1 is continuous.

Second, let us now note that the function x ‘æ axn (for any constant
a œ R) is continuous. This function can again be written as a composition

R (a,fn≠1)≠≠≠≠≠æ R ◊ R multiplication≠≠≠≠≠≠≠æ R.

which is continuous by combining the inductive proof above with Exercise
18.1.31.

Finally, we must prove that the polynomial function p is continuous. We
proceed by induction by the degree n of p. For n = 0, p is the constant
function x ‘æ a0. this is continuous by a previous exercise (18.1.3 1). Now
suppose that any polynomial q of degree n ≠ 1 is continuous. Then p can be
written as a composition

R (q,anxn)≠≠≠≠≠æ R ◊ R addition≠≠≠≠æ R

where q(x) = a0 + a1x1 + . . . an≠1xn≠1. Each function in this composition is
continuous, hence so is the composition. This completes the proof of 1.

2. Omitted.

Proposition 18.3.1

1. Fix a real number b œ R. Then the (singleton) set {b} µ R is closed.

2. For every m Ø 1, the (m ≠ 1)-dimensional sphere

Sm≠1 µ Rm

is a closed subset of Rm. (Recall that

Sm≠1 := {(x1, . . . , xm) such that
mÿ

i=1
x2

i = 1}.

As a hint, you can use the fact that for continuous functions, preimages
of closed subsets are closed.)
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3. More generally, given any polynomial p in m variables, the set

{x such that p(x) = 0} µ Rm

is a closed subset.

4. Even more generally, given a finite collection of polynomials p1, . . . , pk

in m variables, the set

{x such that pi(x) = 0 for all i} µ Rm

is a closed subset.

5. Even more generally, given an arbitrary collection of polynomials {p–}–œA

in m variables, the set

{x such that p–(x) = 0 for every – œ A} µ Rm

is a closed subset.

Proof of 18.3.1. 1. The complement U = R \ {b} is open. (For example, for
any x œ U , the open ball Ball(x; |b ≠ x|) is contained in U .) This shows that
{b} µ R is closed.

2. Let p(x1, . . . , xm) = x2
1 + . . . x2

m. This is a function p : Rm æ R, and is
continuous because it is polynomial. Hence preimages of closed subsets are
closed. Now we note that {1} µ RR is closed by the previous part of this
problem, and we note that p≠1({1}) = Sm≠1.

3. Same proof, but by taking {b} = {0} µ R.
4. Given part 3., note that the set in questin is the intersection of

p≠1
i ({0}); i.e., an intersection of closed subsets of Rm. Hence it is closed.

4. Same proof.

Proposition 18.3.2

1. Fix a real number a. Then the set

(≠Œ, a] µ R

is closed (under the standard topology).
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2. Fix a real number a and let p : Rm æ R be a polynomial function in
m variables. Then the set

{x œ Rm such that p(x) Æ a }

is closed. If you need to, do the same for Ø a rather than Æ a.

Proof of Proposition 19.1.1. 1. The set U = (a, Œ) µ R is open. For exam-
ple, for any x œ U , we have that the open ball Ball(x; |a ≠ x|) is contained
in U . This shows UC = (≠Œ, a] is closed.

2. The indicated set is p≠1((≠Œ, a]). Because p is continuous (Exercise
18.2.11), and preimages of closed sets are closed sets for continuous maps,
the claim follows from the previous part of this problem.

Proposition 19.1.1. Let d : X ◊ X æ R be a metric. Endow X with
the metric topology (i.e., the topology induced by the metric) and endow
X ◊ X with the product topology. R has the standard topology.

1. Show that d is continuous.

2. For any x0 œ X, show that the function

d(x0, ≠) : X æ R, x ‘æ d(x0, x)

is continuous.

Proof of 19.1.1. 1. We use the ‘-” criterion, remembering that the product
metric is given by

dX◊Y ((x, y), (xÕ, yÕ)) = dX(x, xÕ) + dY (y, yÕ).

(In this problem, Y happens to equal X.) So fix (x1, x2) œ X ◊X along with
‘ > 0. For any ”, we have that

dX◊X((x1, x2), (xÕ
1, xÕ

2)) < ” =∆ d(x1, xÕ
1) + d(x2, xÕ

2) < ”. (19.3.0.3)

Keep the above in mind. Now let’s repeatedly apply the triangle inequality:

d(xÕ
1, xÕ

2) Æ d(xÕ
1, x1)+d(x1, xÕ

2) Æ d(xÕ
1, x1)+d(x1, x2)+d(x2, xÕ

2). (19.3.0.4)

By symmetry, we also conclude

d(x1, x2) Æ d(xÕ
1, x1) + d(xÕ

1, xÕ
2) + d(x2, xÕ

2). (19.3.0.5)
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Combining (19.3.0.4) and (19.3.0.5) we obtain:
|d(x1, x2) ≠ d(xÕ

1, xÕ
2)| Æ d(xÕ

1, x1) + d(x2, xÕ
2).

By the previous equation (19.3.0.3), we conclude
|d(x1, x2) ≠ d(xÕ

1, xÕ
2)| Æ 2”.

Thus choosing ” to be any number less than ‘/2, we are finished.
2. We note that the function in question is a composition

X æ X ◊ X
d≠æ R

where the first function sends x ‘æ (x0, x). So it su�ces to prove that for
any x0 œ X, the “horizontal inclusion” function

X æ X◊, x ‘æ (x0, x)
is continuous. Because X is a metric space, let us use the ‘-” criterion. Given
‘, let ” be any positive number less than ‘. Then if d(x, xÕ) < ‘, we see that

dX◊X((x0, x), (x0, xÕ)) = d(x0, x0) + d(x, xÕ) = 0 + ” < ‘.

Proposition 19.1.2 Let d : X ◊X æ R be a metric. Endow X with the
metric topology (i.e., the topology induced by the metric) and endow X ◊ X
with the product topology.

1. Fix a real number a œ R. For every x0 œ X, show that
{ x œ X such that d(x0, x) = a }

is a closed subset of X.

2. Fix a real number a œ R. For every x0 œ X, show that
{ x œ X such that d(x0, x) Æ a }

is a closed subset of X. This is called the closed ball of radius a centered
at x0.

Proof of 19.1.2. 1. By Proposition 18.3.1, the set {a} µ R is closed. We
know that for all x0 œ X, the function x ‘æ d(x0, x) is continuous (Proposi-
tion 19.1.1(2)). Thus the preimage of {a} is closed, and the set in question
is precisely said preimage.

2. Same exact proof, except we take our closed set in R to be (≠Œ, a] µ R.
(This is closed by Proposition 18.3.2(1).)
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Lecture 21

Connectedness

Today is a lecture day. You can drop your pens and pencils.

21.1 From last lecture

21.1.1 On writing proof

(Antoni) Gaudi is the architect who designed the Sagrada Familia in Barcelona,
Spain. I paraphrased him in class, saying

There should be light. But not too much.1

(Gaudi was presumably talking about the design of spaces, and how much
light a space should have.)

The same applies to proofs. “Light” here is a euphemism for detail. So
when I write you a proof, many details may be excluded, so as not to blind
you; but the details included should give you sight of what is going on.

But there are two parts to the light advice: Even before worrying about
having too much light, you should have light. Many of the proofs I’ve read
in homework lack lighting. So blind me. Overburden me with your light.

1
The actual quote is “The amount of light should be just right, not too much, not too

little, since having too much or too little light can both cause blindness.”

1
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21.1.2 Openness and closedness
When we say a subset A is closed or open, it matters to specify what space
A is a subset of. For example, let us consider the space

X = [a, b) µ R

and endow X with the subspace topology. Let U = [a, a + ‘) for some small
positive number ‘ (so that in particular, U µ X). Then

U is an open subset of X (you should check this using the definition of
the topology of X).

But
U is not an open subset of R (you should check this also).

21.2 Path-connectedness
We begin with an example.

Example 21.2.1. Let X = [0, 1] ‡[2, 3] µ R, drawn below:

• •
0 1

• •
2 3

Would you call X connected?

Remark 21.2.2 (Properties of spaces vs. properties of subsets). Above, I
used that X was a subset of R to define the topology of X, but once we know
about X’s topology, we could ask the connectedness question of X (without
reference to R). Is the following space connected?

• • • •

(Importantly, the picture makes no reference to R itself.) So unlike “closed”
or “open,” the adjective “connected” makes sense as a property of a space
X. And when we ask whether a subset is connected, we are asking about
the property of that subset as a space (endowed with the subspace topology).
Aside from specifying the topology of the subspace, the parent set is irrelevant
to the question of connectedness.
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I want to talk today about two di�erent ways to talk about the connect-
edness of a topological space.

This is the most intuitive definition. First, some preliminaries: We let

[0, 1]

denote the usual closed interval from 0 to 1. We treat it as a topological
space by giving it the subspace topology inherited from R.

Definition 21.2.3. Let X be a topological space. A path in X is a continuous
function

“ : [0, 1] æ X.

Example 21.2.4. Below is an image of a possible path “ : [0, 1] æ R2.

“(0)

“(1)

Note that a path need not be injective (it can cross over itself).

Definition 21.2.5. Let X be a topological space, and fix a path “ : [0, 1] æ
X. We say that “ is a path from “(0) to “(1).

Proposition 21.2.6. Let X be a topological space, and fix x, xÕ œ X. If
there exists a path from x to xÕ, then there exists a path from xÕ to x.

This should be an intuitive proposition: If there’s a path from x to xÕ,
you can just “reverse” the path to get from xÕ to x. That’s the intuition we’ll
follow in the proof.

Proof. Consider the function

f : [0, 1] æ [0, 1], t ‘æ 1 ≠ t.
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(So for example, f(0) = 1 and f(1) = 0.)

0 1
•¶ •◊

f

0 1
•¶◊•

You can check that f is continuous.
Now, let

“ : [0, 1] æ X

be a path from x to xÕ (so “(0) = x, and “(1) = xÕ). Let us define

“ = “ ¶ f.

Because f and “ are continuous, the composition “ is. Moreover,

“(0) = “(f(0)) = “(1) = xÕ

and likewise, “(1) = x. Thus “ is a path from xÕ to x.

Remark 21.2.7. Let X be a topological space. Then for any x œ X, there
exists a path from x to itself. To see this, note that the constant path

“ : [0, 1] æ X, “(t) = x’t œ [0, 1]

is a path from x to itself.
The previous proposition says that if there is a path from x to xÕ, then

there is a path from xÕ to x.
Moreover, it turns out you can prove that if there is a path from x to xÕ,

and if. there is a path from xÕ to xÕÕ, then there is a path from x to xÕÕ. To
see this, suppose we have two paths

“Õ : [0, 1] æ X, “ÕÕ : [0, 1] æ X

such that “Õ(0) = x, “Õ(1) = “ÕÕ(0) = xÕ, and “ÕÕ(1) = xÕÕ. Define a path as
follows:

“ : [0, 1] æ X, “(t) =

Y
]

[
“Õ(2t) t œ [0, 1/2]
“ÕÕ(2t ≠ 1) t œ [1, 2, 1].

It would take us a little bit afield to prove that “ is continuous, but I promise
you can prove it with the tools at your disposal. Note that

“(0) = “Õ(2 · 0) = “Õ(0) = x, “(1) = “ÕÕ(2 ≠ 1) = “ÕÕ(1) = xÕÕ



21.2. PATH-CONNECTEDNESS 5

so “ is indeed a path from x to xÕÕ.
All this is to say that there is an equivalence relation on any topological

space X given as follows: We say x ≥ xÕ if and only if there exists a path
from x to xÕ. Though we may not see this too often in this class, there is a
name for the set of equivalence classes for this relation:

fi0(X) = X/ ≥ .

The left-hand side is read “pie nought of X.” It is also called the set of
“path-connected components” of X.

Definition 21.2.8. Let X be a topological space. We say that X is path-
connected if for any two points x, xÕ œ X, there exists a path from x to
xÕ.

Example 21.2.9. Let X = R. Then X is path-connected. To see this, fix
any two points x, xÕ œ X. Then define a function “ by “drawing a straight
path from x to xÕ.” The previous sentence was vague, so let’s make it precise:
Define

“ : [0, 1] æ X, “(t) = x + t(xÕ ≠ x).
Note that x and xÕ are constants (we’ve fixed them!) while t is the variable.

“ is a continuous function. Let’s shed some light on why: Because we’ve
given [0, 1] the subspace topology, the inclusion

[0, 1] æ R, t ‘æ t

is a continuous function. Now let f : R æ R be the linear function t ‘æ
x + t(xÕ ≠ x). This is continuous (for example, by previous lectures). Hence
the composition

[0, 1] æ R f≠æ R
is continuous. On the other hand, this composition is precisely “.

Finally, note that “(0) = x and “(1) = xÕ.

Example 21.2.10. More generally, let X = Rn. Then X is path-connected.
To see this, given x and xÕ in X, again define

“ : [0, 1] æ Rn, t ‘æ x + t(xÕ ≠ x).

Note now that we are using vector scaling and vector addition/subtraction
to define “. I’ll leave it to you to check that “ is continuous, and that “ is a
path from x to xÕ.
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By definition, the notion of path-connectedness depends on the topology
of [0, 1] (because we need to know which functions out of [0, 1] are continu-
ous). So let’s see something basic about the topology of [0, 1]:

Proposition 21.2.11. Suppose that A µ [0, 1] is a subset which is both
closed and open. Then A is either empty, or equal to [0, 1].

For this, we’ll use a Lemma:

Lemma 21.2.12. If B µ [0, 1] is open, and if b œ B does not equal 0 or 1,
then there exists some ‘ > 0 so that (b ≠ ‘, b + ‘) µ B.

Proof of Lemma 21.2.12. Since B µ [0, 1] is open, by definition of subspace
topology, there exists W µ R open so that B = W fl [0, 1]. Now consider the
intersection W fl (0, 1). This is an open subset of R, being the intersection
of two open subsets—in particular, for any b œ W fl (0, 1), there exists an
open ball fully contained in W fl (0, 1) containing b. Let ‘ be the radius of
this open ball. Then

(b ≠ ‘, b + ‘) = Ball(b; ‘) µ W fl (0, 1) µ W fl [0, 1] = B.

Proof of Proposition 21.2.11. First, let us recall a fact from real analysis:

If B µ R is a closed, non-empty, and bounded subset, then B
has a minimal element. That is, there exists b0 œ B such that
b œ B =∆ b0 Æ b.2 Likewise, B has a maximal element.

We proceed by contradiction.
Let B µ A be a closed and open subset; by way of contradiction, we may

assume neither B nor BC are empty. So let us assume 0 œ B without loss of
generality. (If 0 ”œ B, just swap the roles of B and BC .)

Let b0 = min BC . (Note that BC is closed and bounded, so it has a
minimum by the above fact.) Note also that b0 ”= 0. Moreover, b1 ”= 1—for
if so, then BC = {1} µ [0, 1], and BC is not an open subset of [0, 1].

Thus, we may use Lemma 21.2.12 to conclude that BC must contain some
interval (b0 ≠ ‘, b0 + ‘). This contradicts the minimality of b0 œ BC .

Thus, it must be that either B or BC are empty. This completes the
proof.

2
By the completeness axiom of the real line, take b0 to be the infimum of the bounded

set B. Then b0 is a limit point; but B is closed, so b0 œ B.
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This proposition is powerful. For example, we have the following:

Corollary 21.2.13. Let X be a discrete topological space and fix elements
x, xÕ œ X. Then there exists a path from x to xÕ if and only if x = xÕ.

Proof. Suppose “ : [0, 1] æ X is continuous, and that x is in the image
of “. because X has the discrete topology, the singleton set {x} is both
closed and open. (To see this, recall that every subset of X is open in the
discrete topology. In particular, both {x} and its complement are open.)
Thus, the preimage “≠1({x}) is both a closed and open subset of [0, 1]. By
Lemma 21.2.11, the preimage must be either empty or all of [0, 1]. Because
we assumed x to be in the image,

“≠1({x}) = [0, 1].

In particular, “ is a constant function, so “(0) = “(1) = x.

Example 21.2.14. So, if X is a discrete topological space with two or more
elements, X is not path-connected.

Example 21.2.15. Let X = [0, 1] ‡[2, 3] µ R, drawn below as before:

• •
0 1

• •
2 3

Then X is not path-connected.
Indeed, I’ll take x to be some point in [0, 1] and xÕ to be some point in

[2, 3]. Suppose (for the purpose of contradiction) that there is a path

“ : [0, 1] æ X

from x to xÕ. Then the composition

f : [0, 1] “≠æ X æ R

(where the second map is the inclusion map) is continuous. By the inter-
mediate value theorem from calculus, for any value y such that x Æ y Æ xÕ,
there must be some t œ [0, 1] such that f(t) = y.

But “ has image contained in X, and in particular, the composition f
has no image in the open interval (1, 2). In particular, we have been led to a
contradiction.
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Remark 21.2.16. Note that we have used many results from your analysis
class. This is because of the central role of the real line in these discussions,
and because your analysis class is devoted to the study of the real line.

Example 21.2.17. Let X be the subset of R2 drawn below, given the sub-
space topology:

Then X is not path-connected. The proof is similar as the previous example,
so I will be brief: By way of contradiction, suppose “ : [0, 1] æ X is a
continuous path from x to xÕ, where x is in the lower-right component of X
and xÕ is in the upper-left component. Then consider the composition

f : [0, 1] “≠æ X æ R2 æ R

where the middle arrow is the inclusion, and the last arrow is the projection
map sending (x1, x2) ‘æ x1. Then f is continuous, being a composition of
continuous functions; but again, f will violate the intermediate value theo-
rem.

Example 21.2.18. Let X be the subset of R2 shaded below, given the
subspace topology:
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Then X is not path-connected. The proof is similar as the previous example,
so I will be brief: By way of contradiction, suppose “ : [0, 1] æ X is a
continuous path from x to xÕ, where x is in the middle component of X and
xÕ is in the outer component. Then consider the composition

f : [0, 1] “≠æ X æ R2 æ R

where the middle arrow is the inclusion, and the last arrow is now the map
sending an element y œ R2 to the number d(x, y). Then f again violates the
intermediate value theorem.

21.3 Connectedness
So, path-connectedness was an intuitive notion: We’ll say a space is path-
connected if any two points can be connected by a path. Confusingly, the
term “path-connected” is not the same as the term “connected” in our cul-
ture.

We now discuss a far less intuitive notion:

Definition 21.3.1. We say that a space X is connected if the following holds:
If A µ X is both open and closed, then either A = X or A = ÿ.

Example 21.3.2. By Proposition 21.2.11, we know that X = [0, 1] is a
connected space.

Example 21.3.3. Let X be a discrete topological space. If X has two or
more elements, X is not connected.

Example 21.3.4. Let X be the subset of R2 drawn below, given the subspace
topology:



10 LECTURE 21. CONNECTEDNESS

Let us label the lower-left component by A, and the upper-right component
by B. I claim that both A and B are each both open and closed.

To see that A is open, simply observe that there is an open ball W µ R2

for which W fl X = A (and then cite the definition of the subspace topology,
which defines the topology on X µ RR2):

Because B = AC µ X, we conclude B is closed. To see B is open, likewise
observe an open ball in X containing B but not A:

So B is open, meaning A = BC is closed. This shows A µ X is both open
and closed, but A ”= X and A ”= ÿ.

Notice that all our examples connectedness/path-connectedness are the
same. This is because of the following:
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Proposition 21.3.5. If X is path-connected, then X is connected.

Proof. We will prove the contrapositive—that is, if X is not connected, then
X is not path-connected.

Because X is not connected, there exists a subset A µ X which is non-
empty, not all of X, but both open and closed.

So choose x œ A, and choose xÕ œ AC µ X. I claim there is no path from
x to xÕ.

To see this, suppose we have a continuous map “ : [0, 1] æ X for which
“ intersects A, we must have that “≠1(A) is non-empty. On the other hand,
A is both open and closed, so “≠1(A) is both open and closed—this means
“≠1(A) = [0, 1] by Proposition 21.2.11.

That is, if “(t) œ A for some t, then “(t) œ A for every t œ [0, 1]. In
particular, if x = “(0), then xÕ ”= “(1). This proves the claim, and hence the
proposition.

Warning 21.3.6. There exist connected spaces that are not path-connected.
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Lecture 22

More on connectedness

22.1 Some basics
Let’s make explicit the following:

Proposition 22.1.1 (Inclusions are continuous.). Let A µ X and give A the
subspace topology. Then the inclusion function ÿ : A æ X given by ÿ(a) = a
is continuous.

Proof. Suppose W µ X is open. Then ÿ≠1(W ) = A fl W . This is open by
definition of subspace topology.

Proposition 22.1.2 (Maps to images of continuous maps are continuous).
Let f : X æ Y be continuous, and endow f(X) µ Y with the subspace
topology. Then the function X æ f(X) sending x ‘æ f(x) is continuous.

Proof. Suppose V µ f(X) is open. Then there exists some subset W µ Y
for which V = W fl f(X). In particular, f≠1(V ) = f≠1(W ). The latter is
open in X by definition of continuity, so f≠1(V ) µ X is open.

Proposition 22.1.3 (Subspace topologies factor). Let X µ Y µ Z and let
Z be a topological space. Then the following topologies on X are equal:

• The subspace topology TXµZ of X as a subset of Z.

• The subspace topology TXµY of X as a subset of Y (where Y is given
the subspace topology, induced by virtue of Y being a subset of Z).

1
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Proof. (TXµZ µ TXµY ). Let U œ TXµZ . Then by definition, there exists
some W µ Z open for which U = X fl W .

then we see that U = X fl W = X fl (Y fl W ), where the last equality
is true because X µ Y . By definition of subspace topology (for Y ), we see
that V = Y fl W is an open subset of Y . Then U = X fl V implies that
U œ TXµY .

(TXµY µ TXµZ). If U œ TXµY , there is some open subset V œ TY for
which U = V flX. By definition of subspace topology (for Y ), we know there
exists some W µ Z open so that W fl Y = V . Hence

U = X fl V = X fl (W fl Y ) = W fl (X fl Y ) = W fl X

meaning U œ TXµZ .
This finishes the proof.

22.2 An application of connectedness
Let’s recall some ideas from last time. We saw two very di�erent-looking
notions of connectedness:

Definition 22.2.1 (Path-connected). Let X be a topological space. We say
X is path-connected if for every x, xÕ œ X, there exists a continuous map
“ : [0, 1] æ X such that “(0) = x and “(1) = xÕ.

Definition 22.2.2 (Connected). Let X be a topological space. We say X is
connected if the following hold: If A µ X is both open and closed, then A is
either ÿ or X.

We also saw:

Proposition 22.2.3. The interval [0, 1] is connected.

Let’s see one application of the idea of connectedness. The intuition for
the following is that if a function f is continuous, it does not tear apart
things that are connected.

Proposition 22.2.4 (Continuous functions preserve connectedness). Let f :
X æ Y be a continuous function. If X is connected, then f(X) is connected.
If X is path-connected, then so is f(X).
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(Note that f(X) µ Y is being given the subspace topology.)

Proof of Proposition 22.2.4. Let A µ f(X) be both open and closed. Then
f≠1(A) µ X is both open and closed. (This is because the map X æ f(X)
is closed by the Lemma.) Hence f≠1(A) must either be X or ÿ. The former
means that A must equal f(X). The latter means that A must be empty by
definition of the image f(X).

Hence f(X) is connected.
As for path-connectedness: Let y, yÕ œ f(X). Choose x, xÕ œ X so that

f(x) = y and f(xÕ) = yÕ. Because X is path-connected, there exists “ :
[0, 1] æ X for which “(0) = x and “(1) = xÕ. Now let “Õ = f ¶ “. This is
continuous because f and “ are. Moreover,

“Õ(0) = f(“(0)) = y, “Õ(1) = f(“(1)) = yÕ.

Exercise 22.2.5. Prove the following: If X is connected and Y is not, there
exists no continuous surjection from X to Y .

Likewise, if X is path-connected but Y is not, there exists no continuous
surjection from X to Y .

Exercise 22.2.6. Show that if X is connected, then for any equivalence
relation X/ ≥, the quotient space X/ ≥ is connected.

Likewise, show that if X is path-connected, then for any equivalence
relation X/ ≥, the quotient X/ ≥ is path-connected.

Exercise 22.2.7. Show that RP 2 is path-connected and connected.

22.3 Connectedness is not path-connectedness
Last time we saw that if X is path-connected, then it is connected. We will
see that the converse does not hold.

Definition 22.3.1 (Topologist’s sine curve). We let X be the following
union:

{(x1, x2) | x1 = 0}
€

{(x1, x2) | x1 > 0 and x2 = sin(1/x1) } µ R2.

We endow X with the subspace topology (inherited from R2). We call X the
topologist’s sine curve.
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Exercise 22.3.2. Draw X (in R2).

Remark 22.3.3. The name “topologist’s sine curve” is popular, but proba-
bly insinuates an immature separation of mathematical subjects. This space
is no more a topologist’s than anybody else’s.

Theorem 22.3.4. X is connected, but it is not path-connected.

Before we prove the theorems, let’s set some notation. We set

A = {(x1, x2) | x1 = 0}

and
B = {(x1, x2) | x1 > 0 and x2 = sin(1/x1) }

so we have that
X = A fi B.

Remark 22.3.5. The following is what B looks like:

What happens as the x1 coordinate approaches zero? One description might
be that the x2 coordinate oscillates—and it oscillates “faster and faster”.

Lemma 22.3.6. A and B are both homeomorphic to R.

Proof. I claim that the function

R æ A, x ‘æ (0, x)

is a homeomorphism. I will leave the proof to you.
As for B, consider the maps

R>0 æ B, t ‘æ (t, sin(1/t))



22.3. CONNECTEDNESS IS NOT PATH-CONNECTEDNESS 5

and
B æ R?0, (x1, x2) ‘æ x1.

These are both continuous and are inverses to each other. Moreover, R>0
is homeomorphic to R by taking, for example, the log and exp maps. This
concludes the proof.

Lemma 22.3.7. if U is an open subset of X and contains all of A, then it
intersects B.

Proof. Let U µ X be open. If A µ U , let x = (0, 1) œ A. Because U is an
open subset of X, by definition of subspace topology, U is the intersection
W fl X for some open subset W µ R2. In particular, there must be some
” > 0 so that the open ball of radius ” centered at x is contained in W . But
given any ”¡ there exists some number positive xÕ

1 < ” so that 1/xÕ
1 is an

integer multiple of fi/2; in particular, there is some positive xÕ
1 < ” so that

(xÕ
1, sin(1/xÕ

1)) œ Ball(x, ”).

That is, Ball(x, ”) fl B is non-empty. This shows that for any W µ R2 for
which W fl X ∏ A, we have that W fl B ”= ÿ. That is, W intersects B, so U
intersects B as well.

Lemma 22.3.8. If K is a closed subset of X that contains all of B, then it
must intersect A.

We will see a proof of this next time, when we discuss closures and closed
subsetes of metric spaces.

Corollary 22.3.9. X is connected.

Proof. Let Q µ X be open and closed. Let us suppose Q is not empty. We
are finished if we can show Q = X.

Because Q is non-empty, it contains some element x.
Let us suppose x œ A. Then Q fl A is non-empty; but because Q is both

open and closed (in X), we conclude that QflA is both open in closed (in A).
Because A ≥= R, A is connected; because Q fl A is non-empty, we conclude
that Q fl A = A. In other words, Q contains A. By Lemma 22.3.7, Q fl B
is hence non-empty. But then Q fl B is a non-empty subset of B which is
both open and closed; because B is connected (being homeomorphic to R),
we conclude that Q fl B = B. But

X = A fi B
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so we conclude (using Q fl A = A and Q fl B = B with Q µ X) that X = Q.
On the other hand, if x œ B, we again see that Q fl B = B by connect-

edness of B. By Lemma 22.3.8 we conclude Q fl A ”= ÿ, and thus Q fl A = A
by connectedness of A. Hence X = Q.

Now, to prove the theorem, it remains for us to prove that X is not
path-connected. To that end, let us prove the following:

Lemma 22.3.10. Let [t0, t1] be a closed interval. Then there does not exist
a continuous function

f : [t0, t1] æ R2

such that f(t0) œ A and f((t0, t1]) µ B.

Proof. We’ll give a proof by contradiction, utilizing the “convergent sequence”
criterion for continuity. (A continuous function preserves convergent se-
quences.)

Suppose a continuous f exists. Consider the composition

[t0, t1]
f≠æ R2 fi1:(x1,x2) ‘æx1≠≠≠≠≠≠≠≠æ R

where the last arrow projects to the first coordinate. This composition is
continuous (because both the above arrows are continuous).

Let us choose two sequences of real numbers. First, we choose a decreasing
sequence

s1, s2, . . . , si œ [t0, t1]

such that lim si æ t0, and so that sin(1/f(si)) is constant.
(This can be constructed as follows: One first chooses an arbitrary s1 œ

(t0, t1] (in particular, s1 ”= t0). By assumption, fi1(f(s1)) > 0. If we have
chosen si, by the continuity of f , we can find some

si+1

so that

1. si+1 œ (t0, (si ≠ t0)/2], and

2. sin(1/f(si+1)) = sin(1/f(si)).
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By the first condition, the sequence si is decreasing and converges to t0. The
second condition ensures that the value sin(1/f(si) is constant with respect
to i.)

We choose our second sequence

sÕ
1, sÕ

2, . . . , sÕ
i œ [t0, t1]

again so the sequence is decreasing, so that lim sÕ
i æ t0, and so that sin(1/f(sÕ

i))
is constant, but with the requirement that

sin(1/f(si)) ”= sin(1/f(sÕ
i)).

(This inequality can be achieved simply by a prudent choice of sÕ
1; we are

using here that fi2 ¶ f is non-constant.)
But the composition

[t0, t1]
f≠æ R2 fi2:(x1,x2) ‘æx2≠≠≠≠≠≠≠≠æ R

(where we now project to the second coordinate) is also continuous. Thus,
we must have that

sin(1/s1) = lim fi2 ¶ f(si) = fi2 ¶ f lim si = fi2 ¶ f(t0)

(where the middle equality uses the continuity of fi2 ¶ f) and, at the same
time,

sin(1/sÕ
1) = lim fi2 ¶ f(sÕ

i) = fi2 ¶ f lim sÕ
i = fi2 ¶ f(t0).

We arrive at a contradiction because sin(1/s1) ”= sin(1/sÕ
1).

Lemma 22.3.11. Let a œ A and b œ B. There is no continuous path in X
from a to b.

Proof. Let “ : [0, 1] æ X be continuous. Then “≠1(A) µ [0, 1] is a closed
subset. (This is because A µ X is closed—to see this, note that A µ R2 is
closed.) On the other hand, “≠1(A) ”= [0, 1] because “(1) = b ”œ A.

So let t0 = max “≠1(A) be the largest real number t œ [0, 1] for which
“(t) œ A. Then the composition

f : [t0, 1] æ [0, 1] “≠ææ B fi {“(t)}

would be a continuous function contradicting the conclusion of Lemma 22.3.10.
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Now we can finally prove the theorem:

Proof of Theorem 22.3.4. We know that X is not path-connected by Lemma 22.3.11.
So it su�ces to show that X is connected. This is the content of Corol-
lary 22.3.9.

22.4 Lessons learned
This lecture contained a lot of new mathematics. The reason we went in-
depth was the following: I wanted to show you that a space can be connected,
but not path-connected. The proofs above show that the “topologist’s sine
curve” is exactly such a space.

But there are other results we can glean from above.

Proposition 22.4.1. There exist topological spaces Y and continuous func-
tions

f : (0, 1] æ Y

such that f does not extend to a continuous function on [0, 1]. that is, one
can choose f and Y so that there does not exist a function

“ : [0, 1] æ Y

for which “(t) = f(t) for all t œ (0, 1].
Indeed, even if we demand that Y = R2 and that f has bounded image,

it is not always true that f extends to [0, 1].

Proof. Let Y = R2. Take f to be the function

f(t) = (t, sin(1/t)).

We saw that f does not extend continuously to a function f : [0, 1] æ R2.
As for the second part of the proposition, notice that the image of f

is indeed bounded—for example, the image is contained in the rectangle
[0, 1] ◊ [≠1, 1] µ R2, which is in turn contained in a ball of radius 3 centered
at the origin.

Remark 22.4.2. Another lesson learned is that the di�erence between “con-
nected” and “path-connected” isn’t too pathological.
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(“Pathological” is a term that mathematicians use to pass judgement on
particular examples. A less judgmental, but equivalent, way to describe a
“pathological example:” A pathological examples is one that betrays your
early intuitions, and moreover, one having properties that we either rarely
encounter, or want to avoid to make proving results easier.)

Note that the topologist’s sine curve is Hausdro�—in fact, it’s even a
metric space (being a subspace of R2). These are the kinds of spaces that we
thought we would feel somewhat comfortable with.

It depends on your tastes whether you want to interpret this example as
saying ‘’Subspaces of R2 can be kind of crazy,” or as saying “We should get
used to certain phenomena because they will show up whether we expect
them or not.”



Lecture 23

Closures and interiors

Fix X a topological space. As you know, given a collection {U–}–œA of open
subsets of X, the union €

–œA

U–

is an open subset of X. Likewise, given a collection {K—}—œB of closed subsets
of X, the intersection ‹

—œB

K—

is a closed subset of X.
Because of these properties, if we fix some subset B µ X, it makes sense

to speak of the “large open subset of X contained in B” and “the smallest
closed subset of X containing B.” These descriptions are informal; we’ll
make them precise shortly. They characterize the interior and closure of B,
respectively.

These constructions (interiors and closures) are useful, and they’re also
fun and interesting. Fix some subset B µ R2. It’s not a bad use of one’s day
to figure out what the interior and closure of B are.

23.1 Closed subsets of metric spaces
Before we go on, let me prove the following:

Proposition 23.1.1. Let X be a metric space and fix a subset A µ X.
Then the following are equivalent

1
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1. A is closed.

2. For every convergent sequence x1, . . . such that xi œ A for every i, then
the limit of the sequence is also in A.

Proof. You are proving (1) =∆ (2) in your homework. So here we’ll prove
the converse.

We’ll prove (2) =∆ (1) by proving the contrapositive. So suppose that
A is not closed. Then AC is not open; so fix y ”œ A such that for every r > 0,
Ball(y, r) ”µ AC . (At least one such y is guaranteed to exist if AC is not
open.)

Now fix a decreasing sequence of positive real numbers r1, r2, . . . converg-
ing to 0.1 For every ri, there exists some xi œ AflBall(y, ri). By construction,
x1, x2, . . . is a sequence in A whose limit is y. This proves the contraposi-
tive.

23.2 Closure

Definition 23.2.1. Fix a topological space X and let B µ X be a subset.2
Let

K

be the collection of all closed subsets of X containing B.3 Then the closure
of B is defined to be

B :=
‹

KœK

K.

In words, the closure of B is the set obtained by intersecting every closed
subset containing B.

Remark 23.2.2. Note that B is always a subset of B.

Remark 23.2.3. Note that B is a closed subset of X. This is because the
intersection of closed subsets is always closed.

1
For example, ri = 1/i.

2
It could be any kind of subset: open, closed, neither!

3
Note that X is an element of K.
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Figure 23.1: An open ball on the right; its closure (a closed ball) on the left.

Remark 23.2.4. If B µ X is closed, then B = B. To see this, note that B
is an element of K because B is closed. Hence

‹

KœK

K = B fl
Q

a
‹

KœK,K ”=B

K

R

b .

But this righthand side is a subset of B because it is obtained by intersecting
B with some other set. In particular,

B µ B.

Because B µ B (for any kind of B), we conclude that B = B.

Example 23.2.5. If B = ÿ, then B = ÿ. If B = X, then B = X.

Exercise 23.2.6. Let X = Rn (with the standard topology). Let B =
Ball(0, r) be the open ball of radius r. Show that the closure of B is the
closed ball of radius r; that is,

B = {x œ Rn such that d(x, 0) Æ r .}

Proof. You are showing in your homework that if K µ X is closed and if
x1, . . . is a sequence in K converging to some x œ X, then x is in fact an
element of K.

Choose a point x of distance r from the origin. And choose also an
increasing sequence of positive real numbers t1, t2, . . . converging to 1.4 Then
the sequence

xi = tix

4
For example, you could take ti = i/(i + 1).
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is a sequence in B converging to x. If K ∏ B, then the xi define a sequence
in K; moreover, if K is closed, the limit x is in K. Thus x œ K for any
closed subset containing B. In particular, x is in the intersection of all such
K. Thus x œ B. This shows that the closed ball of radius r is contained in
B.

On the other hand, consider the function f : Rn æ R given by d(0, ≠);
that is, the “distance to the origin” function. We see that f≠1([0, r]) is equal
to the closed ball of radius r—in particular, this closed ball is a closed subset
of Rn, and it obviously contains Ball(0, r). This shows that B is a subset of
the closed ball of radius r (because B can be expressed as the intersection of
this closed ball with other sets). We are finished.

Exercise 23.2.7. Suppose f : X æ Y is a continuous function, and let
B µ X be a subset. Show that

f(B) µ f(B).

In English: The image of the closure of B is contained in the closure of the
image of B.

Proof. Let C be the collection of closed subsets of Y containing f(B). Then

f≠1(f(B)) = f≠1

Q

a
‹

CœC

C

R

b

by definition of closure. We further have:

f≠1

Q

a
‹

CœC

C

R

b =
‹

CœC

f≠1(C).

Now, because f is continuous, we know that f≠1(C) is closed for every C œ C.
Moreover, because f(B) µ C, we see that B µ f≠1(C). We conclude that
for every C œ C, f≠1(C) œ K. Thus

‹

KœK

K µ
‹

CœC

f≠1(C).

The lefthand side is the definition of B. The righthand side is f≠1(f(B)).
We are finished.
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Remark 23.2.8. It is not always true that f(B) is equal to f(B). For ex-
ample, let B = X = Ball(0, r), and let f : X æ R2 be the inclusion. Then
f(B) = X, while f(B) is the closed ball of radius r.

Exercise 23.2.9. Find an example of a continuous function p : Rn æ R
such that

{x such that p(x) < t},

does not equal
{x such that p(x) Æ t}.

Example 23.2.10. Let B µ R2 be the following subset:

B = {(x1, x2) such that x1 > 0 and x2 = sin(1/x1)} µ R2.

This is not a closed subset of R2. I claim

B = B
€

{(x1, x2) such that x1 = 0 and x2 œ [≠1, 1]}.

That is, B is equal to the topologist’s sine curve from last class.
Let us call the righthand side S for the time being. First, I claim that

S µ B. Indeed, fix some point (0, T ) œ S \ B. Then there is an unbounded,
increasing sequence of real numbers t1, t2, . . . for which sin(ti) = T ; let si =
1/ti. Then the sequence of points

xi = (si, sin(1/si)) = (si, T )

converges to (0, T ), while each xi is an element of B. In particular, (0, T ) is
contained in any closed subset containing B. This shows S µ B.

To complete the proof, it su�ces to show that S is closed. For this,
because R2 is a metric space, it su�ces to show that any convergent sequence
contained in S has a limit contained in S. So let x1, x2, . . . be a sequence in
S.

Suppose that the limit x œ R2 has the property that the 1st coordinate is
non-zero. There is a unique point in S with a given non-zero first coordinate
t, namely (t, sin(1/t)). Moreover, because the function t ‘æ sin(t/1) is con-
tinuous, if ti = fi1(xi) converges to t, we know that (ti, sin(1/ti)) converges
to (t, sin(1/t)). So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us ex-
amine the second coordinates fi2(x1), . . .. By continuity of fi2, the sequence
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fi2(x1), fi2(x2), . . . converges to some T ; because each xi has a second coor-
dinate in [≠1, 1], and because [≠1, 1] µ RR is closed, we conclude that the
limit T is also contained in [≠1, 1]. Hence the limit of the sequence x1, . . . ,
is the point (0, T ), and (0, T ) œ S.

Because any sequence in S with a limit in R2 has limit in S, S is closed.

23.3 Interiors
Definition 23.3.1. Let X be a topological space and fix B µ X. Let U
denote the collection of pen subsets of X that are contained in B. Then the
interior of B is defined to be the union

int(B) =
€

UœU

U.

Remark 23.3.2. For any B, we have that int(B) µ B. Moreover, int(B) is
an open subset of both B and of X.

Remark 23.3.3. If B is open, then int(B) = B. This is because B œ U, so

int(B) =
€

UœU

U = B fi
Q

a
€

U ”=B,UœU

U

R

b

meaning int(B) contains B (because int(B) is a union of B with possibly
other sets). Thus we have that int(B) µ B µ int(B), meaning int(B) = B.

Example 23.3.4. We have that int(ÿ) = ÿ and int(X) = X.

Example 23.3.5. Let X = Rn and let B be the closed ball of radius r. Then
int(B) = Ball(0, r) is the open ball of radius r.

To see this, we note that Ball(0, r) is open and contained in B, so
Ball(0, r) µ int(B) by definition of interior. Because int(B) µ B, it suf-
fices to show that no other point of B (i.e., no point in B \ Ball(0, r)) is
contained in the interior of B.

So fix y œ B \ Ball(0, r), meaning y is a point of exactly distance r away
from the origin. It su�ces to show that there is no open ball containing y
and contained in B; for then there is no U œ U for which y œ U .

Well, for any ” > 0, Ball(y, ”) µ R2 contains some point of distance > r
from the origin. So Ball(y, ”) is never contained in B. This completes the
proof.



Lecture 24

One-point compactification

Today you have a guest instructor. Get into your groups (you know the drill)
and tackle the proofs of the propositions below.

Do not spent more than 15 minutes on proving a given propo-
sition. Move on!

Definition 24.0.1. Let X be a topological space. We are now going to
create a new topological space X+.

As a set, X+ = X
‡{ú}. In other words, X+ is the set obtained by

adjoining a single point called ú to X.
The topology TX+ is defined as follows: U µ X+ is open if either

1. ú ”œ U and U is open in X, or

2. ú œ U and U fl X is the complement of a closed, compact subspace of
X.

We call X+ the one-point compactification of X.

Remark 24.0.2. Note that if X is Hausdor�, we may remove the adjective
“closed” from the second condition above.

24.1 Basic properties
Prove the following:

Proposition 24.1.1. TX+ is a topology on the set X+.

1
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(Thus, you need to prove that the collection of sets U satisfying 1. or 2.
satisfies all the properties of a topology. You will want to use at some point
that the empty set is a compact space.)

Proposition 24.1.2. X+ is compact.

(Thus, you need to prove that every open cover of X+ admits a finite
subcover.)

Remark 24.1.3. This justifies the word “compactification.”

24.2 Examples
Prove the following:

Proposition 24.2.1. If X is compact, then X+ is homeomorphic to the
coproduct X

‡{ú} with the coproduct topology.

Proposition 24.2.2. If X = Rn, then X+ is homeomorphic to Sn.

Remark 24.2.3. The proof of Proposition 24.2.2 is made easier if you know
about stereographic projection. This is the function

p : Sn \ {(0, . . . , 0, 1)} æ Rn, (x1, . . . , xn+1) ‘æ 1
1 ≠ xn+1

(x1, . . . , xn).

Here is a description of p in words. For brevity, let us call the point (0, . . . , 0, 1) œ
Sn the north pole of Sn. Given a point x œ Sn such that x is not the north
pole, p sends x to the intersection of

• the line through x and the north pole, with

• the hyperplane {xn+1 = 0}, which one can identify with Rn.

Proposition 24.2.4. If X and Y are homeomorphic, so are X+ and Y +.



24.2. EXAMPLES 3

Solutions to Lecture 24 Propositions
Proof of Proposition 24.1.1. (i) We first show ÿ, X+ is in this topology. So let
U = ÿ. Then ú ”œ U , so we must check whether ÿ is open in X (by condition 1
of the definition of TX+). It is, by definition of topological space (i.e., because
X itself is a topological space). Now let U = X+. Since ú œ U , we must
check whether U fl X is the complement of a closed, compact subspace of X
(by condition 2 of the definition of TX+). It is, because U fl X = X and X
is the complement of ÿ. (Note that ÿ is both closed and compact.)

(ii) Now let {U–}–œA be an arbitrary collection where U– œ TX+ for any
– œ A. We must show that the union

U :=
€

–œA

U– µ X+

is in TX+ .
Note that for any – œ A, we know that

U– fl X

has a complement given by a closed subspace of X. (This is true regardless
of whether U– satisfies case 1. or in case 2. of the definition of TX+ .) Let us
call this closed subspace K–, and let us call the intersection

K :=
‹

–œA

K–.

Note that the arbitrary intersection of closed subsets is closed, so K µ X is
closed. Then by de Morgan’s laws, we see that

X fl U = X fl
Q

a
€

–œA

U–

R

b = (
‹

–œA

K–)C = KC .

where the complement is taken inside X. Now, if ú ”œ U , then we have shown
that UC is closed, so by condition 1. of the definition of T+, we see that
U µ X+ is indeed in TX+ .

On the other hand, if ú œ U , then for some – œ A, we see that ú œ U–.
In particular, K– is not only closed, but also compact. Thus K µ K– is a
closed subspace of a compact K–, meaning K itself is compact. This shows
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that U fl X = KC is the complement of a compact, closed subspace of X, so
U is open by condition 2. of the definition of TX+ .

(iii) Now we must show that a finite intersection of elements in TX+ is in
TX+ .

So fix U1, . . . , Un, a finite collection of elements in TX+ . For each i, let
Ki = (Ui fl X)C . Note that Ki is closed, and is compact if ú œ Ui. We let

U = U1 fl . . . fl Un µ X+

and
K = K1 fi . . . fi Kn µ X.

Note that by de Morgan’s laws, we again have

U fl X = KC µ X

(where the complement is again taken inside X).
If ú ”œ U , then U = KC . Being a complement of a closed subset in X, we

see that U µ X is open in X, so U œ TX+ by condition 1. of the definition.
If ú œ U , then ú œ Ui for every i, so by condition 2, each Ki is not only

closed but also compact. Lemma: The finite union of compact subspaces
is compact. (Proof: Given an open cover of K, note that the open cover
determines a finite subcover of each Ki. Taking the union of these finite
subcovers, we have a finite union of finite collections; hence the resulting
union is a finite open cover of K itself.) Thus K itself is compact. By
condition 2, U is in TX+ .

Proof of Proposition 24.1.2. Let {U–}–œA be an open cover of X+. By defi-
nition of cover, there is some –0 œ A such that ú œ U–0 . So by condition 2
of the definition of TX+ , we know

X+ = U–0 fi K

where K is a compact, closed subspace of X and K fl U–0 = ÿ.
Before we go any further, let us point out that X µ X+ is an open

subset by condition 1 of the definition of T+. Thus the subspace topology of
K µ X+ is equal to the subspace topology of K µ X.

Invoking the definition of open cover, and by definition of subspace topol-
ogy (for K µ X), we know that the collection

{U– fl K}–inA
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is an open cover of K. Since K is compact, we can choose some finite
collection –1, . . . , –n so that {U–1 fl K, . . . , U–n fl K} is an open cover of K.
In particular,

U–0 fi U–1 fi . . . fi U–n

is an open cover of X+ itself. This exhibits a finite subcover of the original
open cover, and we are finished.

Proof of Proposition 24.2.1. We must show that W µ X+ is open if and only
if W fl X and W fl {ú} is open.

To see the latter claim, we must prove that the one-element set

U = {ú} µ X+

is open. This is because U fl X = ÿ = XC , where the complement is taken
in X. But X is closed (as a subset of itself), and is compact by hypothesis,
so by condition 2, U is open.

On the other hand, WflX is always open for a one-point compactification—
this is obvious if ú ”œ W by condition 1, and if ú œ W , then W fl X is a
complement of a (compact and) closed subset of X by condition 2, hence by
definition of closedness, W fl X is open in X.

This completes the proof.

Proof of Proposition 24.2.2. Omitted, as it is entirely analogous to the solu-
tions to homework.

Proof of Proposition 24.2.4. Given a homeomorphism f : X æ Y , define a
function

g : X+ æ Y +, x ‘æ

Y
]

[
úY x = úX

f(x) x œ X.

Here, úY œ Y + represents the “extra point” in the one-point-compactification
of Y , and likewise for úX œ X+.

Clearly g is a bijection because f is. Let us show that U µ X+ is open if
and only if g(U) µ Y + is open.

1. If úX ”œ U , then úY ”œ g(U). But because f is a homeomorphism,
g(U) = f(U) is open if and only if U fl X = U is open.

2. If úX œ U , then úY œ g(U). This means that U fl X = KC (where the
complement is taken in X) for some compact, closed K µ X. But because f
is a homeomorphism, K µ X is compact and closed if and only if f(K) µ Y
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is also compact and closed. Thus f(U) fl Y is the complement of a closed,
compact subspace of Y if and only if U fl X is the complement of a closed,
compact subspace of X. This completes the proof.
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Quiz: Nov 19, 2019
Write your name here:

Complete the following definitions:

1. Let X be a topological space. X is called compact if ....

2. Let X be a set. A collection T of subsets of X is called a topology if ...



Lecture 25

Density, Interiors

Today you have a guest instructor. Get into your groups (you know the drill)
and tackle the proofs of the propositions below.

Do not spent more than 15 minutes on proving a given propo-
sition. Move on!

25.1 Density
Definition 25.1.1. Let X be a topological space and fix a subset B µ X.
We say that B is dense in X if B = X.

Prove the following:

Proposition 25.1.2. Fix B µ X. The following are equivalent:

1. B is dense in X.

2. For every non-empty open U µ X, U fl B ”= ÿ.

3. For every x œ X, and every neighborhood A of x in X, we have that
A fl B ”= ÿ.

4. For every x œ X, and every open neighborhood A of x in X, we have
that A fl B ”= ÿ.

Proposition 25.1.3. Q µ R is dense.

Proposition 25.1.4. R \ Q is dense in R.

1
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Exercise 25.1.5. For each of the following examples of subsets of R2, identify
the closure, the interior, and the boundary. Which of these is dense?

1. B = {(x1, x2) such that x1 ”= 0 }.

2. B = t
(a,b)œZ◊Z(a ≠ 1, a + 1) ◊ (b ≠ 1, b + 1).

3. B = {(x1, x2) such that at least one of the coordinates is rational}.

25.2 Interiors
Definition 25.2.1. Let X be a topological space and fix B µ X. Let U
denote the collection of pen subsets of X that are contained in B. Then the
interior of B is defined to be the union

int(B) =
€

UœU

U.

Prove the following:

Proposition 25.2.2. For any B, we have that int(B) µ B. Moreover,
int(B) is an open subset of both B and of X.

Proposition 25.2.3. B µ X is open if and only if int(B) = B.

Example 25.2.4. We have that int(ÿ) = ÿ and int(X) = X.

Example 25.2.5. Let X = Rn and let B be the closed ball of radius r. Then
int(B) is the open ball of radius r.

To see this, we note that Ball(0, r) is open and contained in B, so
Ball(0, r) µ int(B) by definition of interior. Because int(B) µ B, it suf-
fices to show that no other point of B (i.e., no point in B \ Ball(0, r)) is
contained in the interior of B.

So fix y œ B \ Ball(0, r), meaning y is a point of exactly distance r away
from the origin. It su�ces to show that there is no open ball containing y
and contained in B; for then there is no U œ U for which y œ U .

Well, for any ” > 0, Ball(y, ”) µ R2 contains some point of distance > r
from the origin. So Ball(y, ”) is never contained in B. This completes the
proof.
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Solutions to Lecture 25 Propositions
Proof of Proposition 25.1.2. There is a mistake in this problem: Condition
2 should say that for every non-empty U µ X, we have U fl B ”= ÿ.

1 =∆ 2. Proof by contrapositive. Suppose that there is some non-empty
open U µ X such that U fl B = ÿ. Then UC is closed while UC ∏ B, so
the closure of B is contained in UC by definition of closure. In particular, B
does not contain U , so could not equal all of X.

2 =∆ 4. This is obvious, as if A is an open neighborhood of x, then A
is a non-empty open subset of X.

4 =∆ 3. Given A a neighborhood of x, let U µ A be the open subset
containing x (guaranteed by the definition of neighborhood). Then U flB ”= ÿ
by 4, so A fl B ∏ U fl B ”= ÿ.

3 =∆ 1. Clearly B µ X always, so we must show that X µ B. Let
K µ X be a closed subset containing B. Then KC is open. If KC is non-
empty, choose x œ KC , and note that KC is a neighborhood of x. Thus by
3, KC fl B ”= ÿ; this contradicts the fact that B µ K.

Proof of Proposition 25.1.3. Let x œ R be a real number, and for every inte-
ger n Ø 1, let xn be any rational number in the interval (x ≠ 1/n, x + 1/n).
Then the sequence xn converges to x. By the sequence criterion for closure,
we thus see that any real number is in the closure of Q.

Proof of Proposition 25.1.4. Same exact proof, except choose each xn to be
any irrational number in the interval (x ≠ 1/n, x + 1/n).

Proof of Proposition 25.2.2. int(B) is open in X because it is a union of open
sets. (And unions of open sets are always open by definition of topology.) It
is open in B because

int(B) fl B = int(B),

and by definition of subspace topology, a subset of B is open if and only if
it is an intersection of B with an open subset (like int(B)) of X.

Finally, int(B) µ B because int(B) is a union of subsets of B.

Proof of Proposition 25.2.3. If B is open, then obviously B œ U, while U œ
U =∆ U µ B, so t

UœU U µ B while B µ t
UœU U . Hence B = int(B).

On the other hand, if B = int(B), then B is a union t
UœU U of open

subsets of X; hence B is an open subset of X.
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Quiz: Nov 21, 2019
Write your name here:

Complete the following definitions:

1. Let X and Y be topological spaces. A function f : X æ Y is called a
homeomorphism if ...

2. Let X be a topological space. X is called path-connected if ...



Lecture 26

Some fun examples

Do not spent more than 10 or 15 minutes on proving a given propo-
sition. Move on and have fun!

26.1 Euclidean space is an open ball
Here is a basic one:

Proposition 26.1.1. Let r > 0 and fix x œ Rn. Then Ball(x, r) is homeo-
morphic to Rn.

26.2 Tori
Here are four spaces:

1. A is the product space S1 ◊ S1.

2. B is the quotient space [0, 1] ◊ [0, 1]/ ≥, where ≥ is the following
equivalence relation:

x ≥ xÕ ≈∆

Y
]

[
x1, xÕ

1 œ {0, 1} and x2 = xÕ
2 or

x1 = xÕ
1 and x2, xÕ

2 œ {0, 1}
.

Here, x = (x1, x2) œ [0, 1] ◊ [0, 1]. (It may help to draw a picture on a
square showing what kind of “gluing” is happening.)

1
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3. C is the surface in R3 parametrized by the equation

r̨(◊, „) = ((a cos ◊ + b) cos „, (a cos ◊ + b) sin „, a sin ◊)

for 0 < a < b and ◊, „ œ [0, 2fi].

4. D is the subset in C ◊ C given by points (x, y) œ C ◊ C such that
|x| = |y| = 1 (given the subspace topology).

Proposition 26.2.1. A and D are homeomorphic.

Proposition 26.2.2. B and C are homeomorphic.

Proposition 26.2.3. Any two of the spaces in {A, B, C, D} are homeomor-
phic.

Proposition 26.2.4. If X is any of the above spaces, then for every x œ X,
there is some open subset U µ X with x œ U such that U is homeomorphic
to R2.

26.3 What the...?
Can you draw what happens when you glue together the edges of an oc-
tahedron as below? (You glue a1 to the other edge labeled a1, in the way
respecting directions as indicated. Likewise glue edge a2 to a2, and b1 to b1,
and b2 to b2.)

Proposition 26.3.1. Let X be the space obtained by gluing as above. For
every x œ X, there is some open subset U µ X with x œ U such that U is
homeomorphic to R2.
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Solutions to Lecture 26 Propositions
Proof of Proposition 26.1.1. Step 0. Note that Ball(x, r) is homeomorphic
to Ball(0, r). This is by translation:

Ball(x, r) æ Ball(0, r), y ‘æ y ≠ x.

The inverse map is given by y ‘æ y + x. These are both continuous functions
because addition of a constant (called x) is a continuous function.

Step 1. Note that Ball(0, r) is homeomoprhic to Ball(0, 1). This is because
the function

Ball(0, r) æ Ball(0, 1), y ‘æ y/r

is clearly continuous (it is polynomial, we’re scaling y by a constant). The
inverse function is given by yÕ ‘æ ryÕ, and is again continuous.

Step 2. We must show that Ball(0, 1) is homeomorphic to Rn. Then the
composition

Ball(x, r) step0≠≠≠æ Ball(0, r) step1≠≠≠æ Ball(0, 1) æ Rn

is a homeomorphism we seek.
First note that the “distance to the origin” function

Rn æ RØ0 y ‘æ d(y, 0)

is continuous from a previous in-class exercise. In particular, the composition

Ball(0, 1) æ Rn æ [0, fi/2] y ‘æ fi/2 · d(y, 0)

(called “include the ball into Rn,” then “measure distance to origin,” then
“scale”) is continuous. Let us now post-compose with the arctan function,
which is also continuous:

Ball(0, 1) æ Rn æ [0, fi/2] æ [0, Œ)y ‘æ arctan(fi/2 · d(y, 0)).

We will call this composition f , so f(y) = arctan(fi/2·d(y, 0)). Then consider
the function

„ : Ball(0, 1) æ Rn, y ‘æ f(y) · y.

Geometrically, this keeps the vector y in “the same direction,” but scales the
length of Y .



4 LECTURE 26. SOME FUN EXAMPLES

„ is continuous because it is the product of two continuous functions called
f and idRn . It is straightforward to check that „ is a bijection by checking
that the function [0, 1] æ [0, Œ), t ‘æ arctan(fi/2t) is a bijection. An
inverse is given by sending

y ‘æ tan(d(y, 0))y · 2/fi.

Proof of Proposition 26.2.1. By definition, S1 µ R2, so we can see that S1 ◊
S1 µ R2 ◊ R2 ≥= C ◊ C. It remains to see that S1 is equal exactly to those
x œ R ◊ R ≥= C having norm 1.

To be more rigorous, I needed to tell you that I identify C with R2 in
the usual way, and endow C with the exact same topology as I endowed R2.
I also need to argue that the product topology S1 ◊ S1 coincides with the
subspace topology of seeing S1 ◊ S1 µ R2 ◊ R2, but I will omit this.

Proof of Proposition 26.2.2. Note the function

l : [0, 1] ◊ [0, 1] æ [0, 2fi ◊ [0, 2fi], (s, t) ‘æ (2fis, 2fit)

given by scaling. This is obviously a homeomorphism with inverse given by
(◊, „) ‘æ 1/2fi(◊, „). Then the composition

[0, 1] ◊ [0, 1] l≠æ [0, 2fi ◊ [0, 2fi] r̨≠æ R3

where r̨ is the function defining C, is a surjection onto C. Moreover, this
composition is continuous because l and r̨ are. Now let ≥ be the equivalence
relation on [0, 1]◊[0, 1] given by x ≥ xÕ ≈∆ r̨¶l(x) = r̨¶l(xÕ). By analyzing
r̨, you can check this relation is precisely the relation defining B.

Since the composition is continuous, by a result from homework, the map
out of the quotient

g : B æ C

is continuous. Because [0, 1] ◊ [0, 1] is compact, so is B (being a quotient of
a compact space). Moreover, C is a subspace of R3, so is Hausdor�. But g is
continuous by our previous steps, and is precisely a bijection because of the
equivalence relation defining B. Since B is compact and C is Hausdor�, we
conclude that g is a homeomorphism.
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Proof of Proposition 26.2.3. It su�ces to exhibit a homeomorphism from B
to D. To do this, consider the function

j : [0, 1] ◊ [0, 1] æ C ◊ C, (s, t) ‘æ (e2fiis, e2fiit).

(In case you haven’t seen this before, eis = cos(2fis) + i sin(2fis).) This is
clearly continuous and a surjection onto D. You can check that the equiv-
alence relation (s, t) ≥ (sÕ, tÕ) ≈∆ j(s, t) = j(sÕ, tÕ) is precisely the same
as the relation defining B. By the same reasoning as in the previous proof,
we see that j is a continuous bijection, that B is compact, and that D is
Hausdor�; hence j is a homeomorphism.

Proof of Proposition 26.2.4. Omitted.

Proof of Proposition 26.3.1. Omitted.
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More fun examples

Today’s goal is to see examples of di�erent topologies on the same set (just
as a single set may admit di�erent metrics). In fact, you’ve already seen
instances of this phenomenon in the trivial and discrete topologies.

Do not spend more than 10 or 15 minutes on proving a given
proposition. Move on and have fun!

27.1 Two points!
Let A = {a, b} be a set with exactly two elements. (As indicated in the
previous sentence’s notation, we call the two elements a and b.)

Prove the following propositions:

Proposition 27.1.1. A admits exactly four topologies.

(That is, there are exactly four choices of T. To get started, it may help
to begin with the trivial topology and the discrete topology. To find the
other two, of course, you should think hard about the definition of what a
topology is.)

Proposition 27.1.2. Out of these four topologies on A, exactly two of them
are homeomorphic.

So out of the four topologies, two are equivalent, meaning there are
roughly three “kinds” of di�erent topologies on A. We say that, “up to
homeomorphism,” there are exactly three topologies on a two-element set.

1



2 LECTURE 27. MORE FUN EXAMPLES

27.2 Arr?
You are about to explore upper semicontinuous functions and lower semicon-
tinuous functions. As it turns out, a function f : R æ R is continuous if and
only if it is both lower and upper semicontinuous. (See Proposition 27.2.9
below.) This is the historical reason for which these “semicontinuity” notions
were studied—it’s sometimes easier to prove upper and lower semicontinuity
than to prove continuity.

Definition 27.2.1. We define a topology Tupper on R as follows: A subset
U µ R is in Tupper if and only if

1. U is empty,

2. U = R, or

3. U = (≠Œ, a) for some a œ R.

Tupper is called the upper semicontinuous topology on R.

Prove:

Proposition 27.2.2. Tupper is indeed a topology on X.

You may skip the following if you like:

Exercise 27.2.3. For every real number r œ R, let Ur = (≠Œ, r). Then the
intersection ‹

r>0
Ur

is equal to (≠Œ, 0]. In particular, the intersection is not in Tupper (even
though each Ur is).

This shows that Tupper is not closed under arbitrary intersections.

Remark 27.2.4. Note that Tupper is a subcollection of, and not equal to, the
standard topology Tstd on R. Note also that (R,Tupper) is not a Hausdor�
topological space, so the topology Tupper does not arise from any metric.

Definition 27.2.5. Consider a function f : R æ R. f is called upper
semicontinuous if f is continuous as a function from (R,Tstd) to (R,Tupper).

Prove:
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Proposition 27.2.6. Define functions g and h : R æ R by

g(x) =

Y
]

[
0 x < 0
1 x Ø 0.

, h(x) =

Y
]

[
0 x Æ 0
1 x > 0.

.

Then
1. g and h are not continuous as a function from (R,Tstd) to (R,Tstd). (Do

not spent much time on this; you already know this!)

2. g is upper semicontinuous.

3. h is not upper semicontinuous.
Definition 27.2.7. We define a topology Tlower on R as follows: A subset
U µ R is in Tlower if and only if

1. U is empty,

2. U = R, or

3. U = (a, Œ) for some a œ R.
Tlower is called the lower semicontinuous topology on R.

A function f : R æ R is called lower semicontinuous if f is continuous
as a function from (R,Tstd) to (R,Tlower).

You may skip the following exercise if you wish:
Exercise 27.2.8. Let g and h be the functions above.

1. g is not lower semicontinuous.

2. h is lower semicontinuous.
Prove:

Proposition 27.2.9. Let f : R æ R be a function. Then the following are
equivalent:

1. f is continuous as a function from (R,Tstd) to (R,Tstd).

2. f is both upper and lower semicontinuous.
You may skip the following if you wish:

Exercise 27.2.10. Define S as follows: A subset B µ R is in S if and only
if: B is empty, B = R, or B = [a, Œ) for some a œ R.

Then S is not a topology on R.
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