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1 Solutions: Metric spaces

1.1 Definitions
You should know how to define:

1. What a metric (on a set X) is.

2. What a metric space is.

3. What a continuous function between metric spaces is (using ‘ and ”).

4. What a convergent sequence in a metric space is.

5. What an open ball (centered at x of radius r) is.

6. What an open set of a metric space is.

7. The topology associated to a metric.

8. The discrete metric on a set X.

9. The taxicab, standard, and l

Œ metrics on Rn.

4



Draf
t

1. A metric on X is a function d : X ◊ X æ R satisfying the following
for any x, x

Õ
, x

ÕÕ œ X: (0) d(x, x

Õ) = 0 if and only if x = x

Õ. (1)
d(x, x

Õ) = d(xÕ
, x), and (2) d(x, x

Õ) + d(xÕ
, x

ÕÕ) Ø d(x, x

ÕÕ).

2. A metric space is a pair (X, d) where X is a set and d is a metric on
X.

3. A function f : X æ Y is continuous if and only if the following holds:
For every ‘ > 0 and for every x œ X, there exists ” > 0 such that
whenever d

X

(x, x

Õ) < ”, we have that d

Y

(f(x), f(xÕ)) < ‘.

4. A sequence in X is a choice of element x

i

œ X for every positive integer
i. For a point x œ X, say that the sequence x1, x2, . . . converges to x if
for all ‘ > 0, there exists an integer N so that i Ø N =∆ d

X

(x
i

, x) < ‘.
We say that a sequence converges if it converges to some x œ X.

5. An open ball of radius r and centered at x is the set of all points x

Õ œ X

such that d(x, x

Õ) < r.

6. An open subset of a metric space (X, d) is any subset U µ X that be
written as a union of open balls.

7. Given a metric d on X, we declare T
X

to consist of open subsets (in
the above sense). We showed in homework and in class that T

X

is
indeed a topology on X—it contains ÿ and X, it is closed under finite
intersection, and it is closed under arbitrary unions.

8. Given a set X, the discrete metric is the metric defined by

d(x, x

Õ) =
Y
]

[
0 x = x

Õ

1 x ”= x

Õ

9. These are defined by

d

taxi

(x, x

Õ) = |xÕ
1 ≠ x1| + . . . + |xÕ

n

≠ x

n

| =
nÿ

i=1
|xÕ

i

≠ x

i

|

d

std

(x, x

Õ) =
Ò

(xÕ
1 ≠ x1)2 + . . . + (xÕ

n

≠ x

n

)2 =
ı̂ıÙ

nÿ

i=1
(xÕ

i

≠ x

i

)2

d

l

Œ(x, x

Õ) = max{|xÕ
1 ≠ x1|, . . . , |xÕ

n

≠ x

n

|}.5
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1.2
Let (X, d

X

) and (Y, d

Y

) be metric spaces. Suppose f : X æ Y is an isometry.
Prove that the inverse function g : Y æ X is also an isometry.

First let us note that if f is an isometry, then its inverse function g is also an
isometry. To see this, for any y, y

Õ œ Y , let x = g(y) and x

Õ = g(yÕ). Then

d

X

(g(y), g(yÕ)) = d

X

(gf(x), gf(xÕ)) = d

X

(x, x

Õ) = d

Y

(y, y

Õ).

This proves g is an isometry.

1.3
Give an example of two metric spaces (X, d

X

) and (Y, d

Y

), along with a
continuous bijection f : X æ Y , such that the inverse function g : Y æ X

is not continuous.

Let X = Y = Rn and d

X

= d

discrete

, d

Y

= d

std

. Let f be the identity function.
See now solutions to 1.8 and 1.7.

1.4
Let (X, d

X

) and (Y, d

Y

) be metric spaces. Let f : X æ Y be an isometric
embedding. Show that f is continuous.

Given ‘ > 0 and x œ X, let ” = ‘. Because f is an isometric embedding, we
know that for all x, x

Õ œ X,

d

Y

(f(x), f(xÕ)) = d

X

(x, x

Õ).

So if d

X

(x, x

Õ) < ”, then d

Y

(f(x), f(xÕ)) < ” = ‘.
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1.5 (This one is a little involved)
Let (X, d

X

) and (Y, d

Y

) be metric spaces, and let f : X æ Y be a continuous
function. Let

G := {(x, y) such that f(x) = y } µ X ◊ Y

and let
U := X ◊ Y \ G

denote the complement of G. Show that U is an open subset of X ◊ Y .
(Here, we are giving X ◊ Y the product metric.)
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We must prove that U is a union of open balls in X ◊ Y . As we saw in
class, it su�ces to show that for any element (x, y) œ U , we must prove the
existence of some r > 0 for which

Ball
X◊Y

((x, y); r) µ U. (1.1)

So given (x, y), let ‘ = d

Y

(y, f(x))/2. Note that ‘ > 0 because y ”= f(x) (by
definition of U).
On the other hand, by continuity of f , there exists some ” > 0 so that if
d

X

(x, x

Õ) < ”, then d

Y

(f(x), f(xÕ)) < ‘.
So let r = min{‘, ”}. We aim to show (1.1). So let (xÕ

, y

Õ) œ Ball((x, y); r).
Indeed, applying the triangle inequality repeatedly, we find

d

Y

(f(x), f(xÕ)) + d

Y

(f(xÕ), y

Õ) + d

Y

(yÕ
, y) Ø d

Y

(f(x), y

Õ) + d

Y

(yÕ
, y)

Ø d

Y

(f(x), y)
2‘.

Thus we find

d

Y

(f(xÕ), y

Õ) Ø 2‘ ≠ d

Y

(yÕ
, y) ≠ d

Y

(f(x), f(xÕ)). (1.2)

But we know that d

Y

(yÕ
, y) < ‘ because of the definition of the product

metric: We know that

d

X◊Y

((x, y), (xÕ
, y

Õ)) = d

X

(x, x

Õ) + d

Y

(y, y

Õ) < r = min{‘, ”} Æ ‘

so d

Y

(y, y

Õ) < ‘ (because we know d

X

(x, x

Õ) Ø 0). Likewise, we know that
d

X

(x, x

Õ) < ”, so we must have that d

Y

(f(x), f(xÕ)) < ‘. In other words, the
two negative terms on the righthand side of (1.2) both have absolute values
strictly less than ‘. This means that the righthand side of (1.2) is positive.
This shows that d

Y

(f(xÕ), y

Õ) ”= 0; in particular, f(xÕ) ”= y

Õ because d

Y

is a
metric. This shows that (xÕ

, y

Õ) is in U , which was to be shown.

1.6 Open balls for various metrics
Given x œ R2 and r > 0, you should be able to draw

1. The open ball centered at x, with radius r, with respect to the standard
metric d

std

.

8



Draf
t

2. The open ball centered at x, with radius r, with respect to the taxicab
metric d

taxi

.

3. The open ball centered at x, with radius r, with respect to the l

Œ

metric d

l

Œ
.

4. The open ball centered at x, with radius r, with respect to the discrete
metric d

disc

.
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1. By the definition of standard metric, Ball(x, r) consists of those points
x

Õ that are distance less than r from x (under the usual notion of dis-
tance). Thus Ball(x, r) consists of those points that are on the interior
of a circle of radius r (the circle is not included in its interior).

2. By the definition of taxi cab metric, Ball(x, r) consists of those x

Õ such
that the sum |xÕ

1 ≠ x1| + |xÕ
2 ≠ x2| is strictly less than r. Let us first

assume that x

Õ
1 ≠ x1 and x

Õ
2 ≠ x2 are both non-negative, so that we are

studying the set of x

Õ
1, x

Õ
2 satisfying

(xÕ
1 ≠ x1) + (xÕ

2 ≠ x2) < r andx

Õ
1 Ø x1 and x

Õ
2 Ø x2.

You learned how to draw the region of points (xÕ
1, x

Õ
2) satisfying the

above inequalities in a previous class: To address the first inequality,
one first draws the line x

Õ
1 +x

Õ
2 = (r+x1 +x2)—here x

Õ
1, x

Õ
2 are variables

while x1, x2 are fixed—and considers all points under this line. The set
of points satisfying the second inequality is the half-plane lying to the
right of the vertical line with constant horizontal coordinate x1. The
set of points satisfying the third inequality is given by the half-plane
lying above the horizontal line with constant vertical coordinate x2.
The intersection of these three regions gives the a right triangle T and
its interior, excluding its hypotenuse.
One can likewise study the regions given by

(xÕ
1 ≠ x1) ≠ (xÕ

2 ≠ x2) < r andx

Õ
1 Ø x1 and x

Õ
2 Æ x2.

≠ (xÕ
1 ≠ x1) + (xÕ

2 ≠ x2) < r andx

Õ
1 Æ x1 and x

Õ
2 Ø x2.

≠ (xÕ
1 ≠ x1) ≠ (xÕ

2 ≠ x2) < r andx

Õ
1 Æ x1 and x

Õ
2 Æ x2.

The union of the four regions studied gives the open ball of radius r

about (x1, x2). The same way that we obtained a right triangle (with
hypotenuse removed) for the first region we studied, you ca check that
each of the three remaining are right triangles (and their interiors,
though with hypoteneuse removed), and these right triangles are ob-
tained by rotating or reflecting the first triangle T we studied. You
can check that the union of these four regions indeed gives a diamond
shape, centered at (x1, x2), with vertical and horizontal axes of length
2r.
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3. For the l

Œ metric: Fix x œ R2 and r > 0. Then a point x

Õ is contained
in Ball

taxi

(x, r) if and only if

max{|xÕ
1 ≠ x1|, |xÕ

2 ≠ x2|} < r.

Put another way, we must have that

|xÕ
1 ≠ x1| < r and |xÕ

2 ≠ x2| < r.

So let

A = {(xÕ
1, x

Õ
2)such that |xÕ

1 ≠ x1| < r} and B = {(xÕ
1, x

Õ
2)such that |xÕ

2 ≠ x2| < r}.

So that the open ball we seek is the intersection of A and B.
A can be drawn as an infinitely long vertical strip: This is because A

poses no restriction on the vertical coordinate x

Õ
2 of x

Õ, but the horizon-
tal coordinate x

Õ
1 must be contained in the open interval (x1 ≠r, x1 +r).

Likewise, B can be drawn as an infinitely long horizontal strip.
The intersection of A and B is now easily checked to be a square (with-
out its boundary), centered at x, and of width 2r.

4. For the discrete metric, we get very di�erent answers depending on r.
If r Æ 1, then the only point x

Õ such that d

discrete

(x, x

Õ) < r < 1 is given
by x

Õ = x. Hence
Ball(x, r) = {x}.

For example, the open ball of radius 0.5 centered at x is a set with only
one element: x itself.
On the other hand, if r > 1, then any point x satisfies d

discrete

(x, x

Õ) < r,
because d

discrete

only takes on the values 0 and 1. In other words,

Ball(x, r) = R2
.

So for example, the open ball of radius 1.5 (centered at any x) is all of
R2.
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1.7
Prove that the identity function

id : (R2
, d

disc

) æ (R2
, d

std

)

is continuous.

Regardless of x and ‘, choose ” to equal 0.5 (or any number less than 1). Then
if d

discrete

(x, x

Õ) < ”, we know that x = x

Õ. In particular, d

std

(id(x), id(xÕ)) =
d

std

(x, x

Õ) = d

std

(x, x) = 0 < ‘.

1.8
Prove that the identity function

id : (R2
, d

std

) æ (R2
, d

disc

)

is not continuous.

Recall that to show a function f : (X, d

X

) æ (Y, d

Y

) is not continuous, we
have to show the following: There exists an ‘ > 0 and an x œ X so that, for
any ” > 0, there exists x

Õ with d

X

(x, x

Õ) < ” for which d

Y

(f(x), f(xÕ)) Ø ‘.
We let ‘ = 0.5 (or any number less than 1); it turns out our choice of x does
not matter. Then note that d

disc

(y, y

Õ) < ‘ if and only if y = y

Õ. However,
for any ” > 0, there exist x

Õ ”= x for which d

std

(x, x

Õ) < ”; and for such x

Õ we
have that d

disc

(id(x), id(xÕ)) = d

disc

(x, x

Õ) = 1 ”< ‘.

1.9 Open subsets, I
Verify the following:

1. The open interval (≠5, 5) is open in (R, d

std

).

2. The set R is open in (R, d

std

).

3. The set U = R \ Z (of all numbers that are not integers) is open in
(R, d

std

).
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4. The set U = R2 \ Z2 (of all points in the plane whose coordinates are
not both integers) is open in (R2

, d

std

).

(1) This is the open ball of radius 5 centered at the origin. Any open ball B

is a union of open balls (in fact, B is a union of a single open ball: B itself),
so we are finished.
(2) In any metric space (X, d

X

), X is open. This is because, for example
X = t

xœX,r>0 Ball(x, r).
(3) Let x œ U . (So x is any non-integer real number.) Then there is a closest
integer N to x. Let r = |x ≠ N |. Then B(x, r) µ U and x œ B(x, r). From
class, we saw that a subset U µ X is open if and only if for every x œ U ,
there exists r > 0 such that B(x, r) µ U . That’s what we’ve shown. So U is
open.
(4) Let x = (x1, x2) œ U . then there is a closest integer N1 to x1, and a closest
integer N2 to x2. Let r = min{|x1 ≠ N1|, |x2 ≠ N2|}. Then B(x, r) µ U . So
U is open.

1.10 Open subsets, II
Verify the following:

1. The set Q (of rational numbers) is not open in (R, d

std

).

2. The set R \ Q (of irrational numbers) is not open in (R, d

std

).

3. The set R2 \S

1 (of all points not on the unit circle) is open in (R2
, d

std

).
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(1) Let x œ Q be a rational number. Then for any r > 0, there is an irrational
number within distance r of x. Hence for any r > 0, B(x, r) is not contained
in Q. Hence Q is not open.
(2) Same proof as above—for any irrational number x, and any r > 0, there
exists a rational number within distance x of r.
(3) Let U = R2 \ S

1 and x œ U . Also let r = d(x, 0) where 0 is the origin in
R2. If r < 1, then B(x, 1 ≠ r) µ U . This is because for any x

Õ œ S

1, we have
that

1 = d(0, x

Õ) Æ d(0, x) + d(x, x

Õ) = r + d(x, x

Õ).
Thus 1≠r Æ d(x, x

Õ). In particular, x ”œ B(x, 1≠r); this means B(x, 1≠r) µ
U .
If r > 1, then for any x

Õ œ S

1, we have that

r = d(0, x) Æ d(0, x

Õ) + d(x, x

Õ) = 1 + d(x, x

Õ)

so d(x, x

Õ) Ø 1 ≠ r, and in particular, x

Õ ”œ B(x, 1 ≠ r). This means B(x, 1 ≠
r) µ U , so U is open.
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