Writing due Thursday, September 26

Preliminaries. Fix a set X. Recall that an *equivalence relation* on X is a choice of subset

$$E \subset X \times X$$

satisfying the following properties:

- 1. (Reflexivity) For every $x \in X$, we have that $(x, x) \in E$.
- 2. (Symmetry) For every $x, x' \in X$, we have that if $(x, x') \in E$, then $(x', x) \in E$.
- 3. (Transitivity) For every $x, x', x'' \in X$, we have that if $(x, x') \in E$ and $(x', x'') \in E$, then $(x, x'') \in E$.

As a matter of notation, we write $x \sim x'$ if and only if $(x, x') \in E$.

An equivalence class of E is a non-empty subset $A \subset X$ such that (i) If $x \in A$ and $x \sim x'$, then $x' \in A$, and (ii) If $x, x' \in A$ then $x \sim x'$.

Given an equivalence relation E on X, and an element $x \in X$, we write [x] for the (unique) equivalence class containing x.

Given an equivalence relation E, we denote by X/\sim the set of equivalence classes of E.

Note that this definition has nothing to do with topological spaces; it is just a way to construct a new set X/\sim out of the data of an equivalence relation on X.

The assignment. For this week, I want you to spend at least an hour thinking about the notion of an equivalence relation and the set X/\sim . It may be confusing that X/\sim is a set of sets, but X/\sim is supposed to capture the notion of "the set you get by identifying elements of X if they are related by E."

Might there be a different way to define something capturing this notion? Why might equivalence relations and sets like X/\sim come up in mathematics? Can you find examples? Write away, and remember to distinguish when you are being (im)precise.

Finally, I will remind you that the goal of this writing assignment is *not* for you to try to convince me that you understand. I rather want you to write honestly about what you are exploring, so that I can see what you are *thinking*. If you do not show a sufficient amount of thought and exploration, you will not get a high grade.