Extra Credit Assignment 2

Due Thursday, September 10, 11:59 PM

Preliminaries on complex numbers

A complex number is an expression of the form $x+i y$, where x and y are real numbers, and i is a square root of $-1 .{ }^{1}$ We let \mathbb{C} denote the set of all complex numbers. There is a bijection

$$
\mathbb{C} \rightarrow \mathbb{R}^{2}, \quad x+i y \mapsto(x, y)
$$

If you've ever learned about the "complex plane," or how to visualize a complex number as an element of the xy-plane, you have been using this bijection to visualize complex numbers.

We often write a complex number as z or as w.
Given a complex number $w=x+i y$, we let its complex conjugate be

$$
\bar{w}=x-i y
$$

Finally, the product of two complex numbers is dictated by algebra. If $w_{1}=$ $x_{1}+i y_{1}$ and $w_{2}=x_{2}+i y_{2}$, then

$$
w_{1} w_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

You should work this out if you haven't before; make sure to use that $i^{2}=-1$. You should also write out the product $w \bar{w}$ in terms of x and y. It should look familiar.

S^{3} consists of certain pairs of complex numbers

Note that the bijection $\mathbb{C} \cong \mathbb{R}^{2}$ induces a bijection $\mathbb{C}^{2} \cong \mathbb{R}^{4}$. (So you can think an element of \mathbb{C}^{2}-that is, a pair of complex numbers-as a fourdimensional vector.) You can also check that the set

$$
\left\{\left(w_{1}, w_{2}\right) \mid w_{1} \overline{w_{1}}+w_{2} \bar{w}_{2}=1\right\} \subset \mathbb{C}^{2}
$$

is sent to $S^{3} \subset \mathbb{R}^{4}$ under this bijection. In what follows, we will use this implicitly, identifying points of S^{3} with (certain) pairs of complex numbers.

[^0]
The assignment:

Here is an interesting function:

$$
p: S^{3} \rightarrow \mathbb{C} \times \mathbb{R}, \quad\left(w_{1}, w_{2}\right) \mapsto\left(2 w_{1} \overline{w_{2}}, w_{1} \overline{w_{1}}-w_{2} \overline{w_{2}}\right) .
$$

(a) Using the fact that $\mathbb{C} \times \mathbb{R} \cong \mathbb{R}^{3}$, tell me why the image of p is S^{2}. If you convince me of this, p can then be considered a function from S^{3} to S^{2}.
(b) Choose any point $a \in S^{2}$. Tell me why the pre-image $p^{-1}(a)$ is, or looks like, a circle. Hint: It may help to note that the set of complex numbers w such that $w \bar{w}=1$ can be identified with a circle, and you can multiply pairs $\left(w_{1}, w_{2}\right)$ by such w to obtain a new pair $\left(w w_{1}, w w_{2}\right)$.
(c) Based on this, do you think that there is a bijection between S^{3} and $S^{1} \times S^{2}$? Can you exhibit such a bijection? Is it continuous? (It's okay if you don't know what "continuous" means; but can you exhibit a bijection that "feels" continuous?)

[^0]: ${ }^{1}$ No real number can be a square root of -1 ; that is why we have to create a new number called i. Note that i is only one square root of -1 . The other square root is $-i$.

