Extra Credit Assignment 4

Due Thursday, September 24, 11:59 PM

Part I

Let X be a set with n elements in it. How many different topologies does X admit?

Concretely, how many subsets $\mathcal{T} \subset \mathcal{P}(X)$ satisfy the properties of being a topology?

For example, if $n=1$, then X admits one topology.
If $n=2, X$ admits four topologies.
Tell me the answer for $n=1,2,3,4$, and 5 . Bonus points if you can tell me for $n=6$ and $n=7$.

Part II

Let's say that two topologies \mathfrak{T} and \mathcal{T}^{\prime} on X are called equivalent if there is a bijection $f: X \rightarrow X$ such that the following holds: The function $\mathcal{P}(X) \rightarrow$ $\mathcal{P}(X)$ sending a subset A to $f^{-1}(A)$ sends any $U \in \mathcal{T}$ to $f^{-1}(U) \in \mathcal{T}^{\prime}$, and moreover, the resulting function

$$
\mathcal{T} \rightarrow \mathcal{T}^{\prime}, \quad U \mapsto f^{-1}(U)
$$

is a bijection.
How many inequivalent, aka non-equivalent, topologies does a set X with n elements admit? Tell me the answer for $n=3,4,5$, and bonus if you can tell me for $n=6,7$.

For example, if $n=1$, then X admits one topology.
If $n=2, X$ admits three non-equivalent topologies.

