Extra Credit Assignment 5

Due Thursday, October 1, 11:59 PM

This extra credit assignment has many sections; pick and choose which sections you want to do. I recommend Section 1 at the least, as it serves as a review of some things you have learned.

Section 1. Terms and types

Below is a bank of terms, and a bank of *types*. For each of the terms, tell me what type or types of objects the term is allowed to describe.

Т	erm bank:	ſ	Гуре bank:
(i)	Continuous	(A)	A number
		(B)	A function between two sets
(ii)	Topology	(C)	A function between two topolog- ical spaces
(iii)	Partial order relation	(D)	A subset of the power set of a set X .
(iv)	Compact	(E)	A subset of $X \times X$, where X is
(v)	Open		some set.
(vi)	Closed	(F)	A subset of a topological space.
		(G)	A sequence in \mathbb{R}^n .
(vii)	Bounded	(H)	A distance between two points in \mathbb{R}^n
(viii)	Converges	(I)	A topological space.

Your answers could look, for example, simply like

- (i) F
- (ii) A, B, C

- (iii) G
- (iv) A, H, F
 - et cetera.

Section 2. Convergence and continuity. Let us define

$$Z:=\mathbb{Z}_{>0}\bigcup\{\infty\}.$$

In other words, Z is the set consisting of the positive integers, and one more element that we call " ∞ ." We will define a topology on Z as follows:

A subset $U \subset Z$ is open if and only if one of the following holds:

- 1. $\infty \notin U$, or
- 2. $\infty \in U$ and the complement of U is finite.

I will leave the verification that this is a topology on Z to you. (By the way, it may help to remember that the empty set is a finite set.)

Section 2 Part I. Now let $Z \to \mathbb{R}^n$ be a function. We will denote the value of this function on $i \in \mathbb{Z}_{>0}$ by a_i , and the value on $\infty \in Z$ by a_{∞} . Show that a function $Z \to \mathbb{R}^n$ is continuous if and only if the sequence a_1, a_2, \ldots converges to a_{∞} .

Section 2 Part II. Now show that a function $f : \mathbb{R}^m \to \mathbb{R}^n$ is continuous if and only if the following holds: For every sequence a_1, a_2, \ldots in \mathbb{R}^m that converges to b, the sequence $f(a_1), f(a_2), \ldots$ in \mathbb{R}^n converges to f(b).