Homework 1

Due Tuesday, September 1, 11:59 PM

Proof

Let A be an arbitrary set.
(a) Exhibit a bijection between $\mathcal{P}(A)$ and the set of all functions from A to the two-element set $\{0,1\}$.
(b) Prove that there is no bijection between A and $\mathcal{P}(A)$. (Hint: Suppose there is a bijection ϕ from the set A to the set of all functions from A to $\{0,1\}$. Define $\beta: A \rightarrow\{0,1\}$ to be the function such that $\beta(a) \neq$ $(\phi(a))(a)$. What does this say about ϕ ?)

Canvas True/False Questions:

(Submit your answers via Canvas.)

- S^{0} consists of exactly two points.
- S^{1} is a circle.
- S^{2} is a sphere.
- S^{3} consists of exactly two points.
- The n-simplex Δ^{n} is defined to be a subset of \mathbb{R}^{n+1}.
- The number $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ is equal to the distance of the point $\left(x_{1}, x_{2}, x_{3}\right)$ from the origin of \mathbb{R}^{3}.

