Homework 4

Due Tuesday, September 22, 11:59 PM

Proof problem

For this problem, you will need to know what a topology on a set X is. (This is in the notes.) I will write a topology as \mathfrak{T}. Remember that \mathcal{T} is a subset of $\mathcal{P}(X)$ satisfying some properties, and a given set X may admit many different topologies!

Fix a set X.
(a) Show that $\mathcal{P}(X)$ itself is a topology on X. (That is, show that $\mathcal{T}=\mathcal{P}(X)$ is a topology.)
(b) For any collection $\left\{\mathcal{T}_{\beta}\right\}_{\beta \in \mathcal{B}}$ of topologies, show that the intersection

$$
\bigcap_{\beta \in \mathcal{B}} \mathcal{T}_{\beta}
$$

is a topology on X.
(c) Let $\mathcal{S} \subset \mathcal{P}(X)$ be a collection of subsets of X. (\mathcal{S} is not necessarily a topology.) Show that \mathcal{S} is contained in some topology on X. (Hint: Given the first part of this problem, this problem is easy once you understand what it's asking.)
(d) Again let $\mathcal{S} \subset \mathcal{P}(X)$ be a collection of subsets of X. Let

$$
\mathcal{B}:=\left\{\mathcal{T}^{\prime} \subset \mathcal{P}(X) \mid \mathcal{T}^{\prime} \text { is a topology on } X, \text { and } \mathcal{S} \subset \mathcal{T}^{\prime} .\right\}
$$

and

$$
\mathcal{T}_{\mathcal{S}}:=\bigcap_{\mathcal{T}^{\prime} \in \mathcal{B}} \mathcal{T}^{\prime}
$$

Show that $\mathcal{S} \subset \mathcal{T}_{\mathcal{S}}$ and that for any topology \mathcal{T}^{\prime} containing \mathcal{S}, that $\mathcal{T}_{\mathcal{S}} \subset \mathfrak{T}^{\prime}$.

Canvas Quiz Questions:

Let $X=\Delta^{n}$, and $Y=[n]$. Define

$$
f: X \rightarrow Y, \quad x \mapsto \text { The largest } i \text { such that } x_{i}>0 .
$$

That is, writing $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{4}, f$ sends x to the largest number i for which the coordinate x_{i} is a positive number.

For this problem, we will specialize to $n=2$. For each V below, you should be able to tell me which of the images below describes the subset $f^{-1}(V)$ inside Δ^{2}.

1. $V=\{0\}$.
2. $V=\{1\}$.
3. $V=\{2\}$.
4. $V=\{1,2\}$.
5. $V=\{0,1\}$.
6. $V=\{0,1,2\}$.

(b)

[^0]

[^0]: ${ }^{4}$ Recall that when defining $\Delta^{n} \subset \mathbb{R}^{n+1}$, we index the coordinates from 0 to n.

