Homework 5

Due Tuesday, September 29, 11:59 PM

Proof problem

Let m and n be integers with both m and n at least 1. Let $X = \mathbb{R}^m$ and $Y = \mathbb{R}^n$, and fix a function $f: X \to Y$. We give both X and Y the standard topology of Euclidean space.

The problem. Show that the following two statements are equivalent:

- (a) For any open subset $V \subset Y$, the preimage $f^{-1}(V)$ is open.
- (b) For every $x \in X$ and for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$x' \in \text{Ball}(x, \delta) \implies f(x') \in \text{Ball}(f(x), \epsilon).$$

As you do this problem, it may help to note that $\operatorname{Ball}(x, \delta) \subset X$, while $\operatorname{Ball}(y, \epsilon) \subset Y$.

Canvas Questions:

For each of the following subsets A of \mathbb{R}^2 , you should be able to tell me whether the subset is

- (i) Closed but not bounded
- (ii) Closed and bounded and compact
- (iii) Bounded but not closed
- (iv) Not closed and not bounded
- (v) Closed and bounded but not compact

Here are the subsets:

(a) $A = \Delta^1$.

- (b) A is the open ball of radius 3 inside \mathbb{R}^2 , centered at the point (1,1).
- (c) A is a set consisting of exactly three points in \mathbb{R}^2 . (I have not told you which three points.)
- (d) $A = S^1$.
- (e) $A = \mathbb{R}^2$.
- (f) $A = D^2 \setminus \{(0,0)\}$. In other words, A is obtained by removing the origin from D^2 .