Homework 8

Due Tuesday, October 20, 11:59 PM

Proof problem

- (a) State the definitions of:
 - (i) Equivalence relation
 - (ii) Equivalence class
 - (iii) Quotient set
 - (iv) Quotient map
 - (v) Quotient topology (given a topological space X and an equivalence relation on X).
- (b) Suppose X is a compact topological space. Prove that for any equivalence relation ∼ on X, the quotient space X/ ∼ is compact.
- (c) Fix an equivalence relation \sim on a topological space X. Suppose that $f: X \to Y$ is a continuous map with the property that if $x \sim x'$, then f(x) = f(x').
 - (i) Construct a function $f': X/ \sim \to Y$ so that $f' \circ q = f$.
 - (ii) Prove that f' is continuous.

Canvas True/False Questions:

Indicate whether each of the following statements is true or false:

- 1. If \sim is an equivalence relation on a set X, then the quotient map $X \to X/\sim$ is a surjection.
- 2. If ~ is an equivalence relation on a topological space X, then the quotient map $X \to X/\sim$ is a surjection.
- 3. If ~ is an equivalence relation on a topological space X, then the quotient map $X \to X/\sim$ is continuous.

- 4. Define an equivalence relation on \mathbb{R} as follows: We say that $x \sim x'$ if and only if there exists a *non-zero* real number t for which tx = x'. Then \mathbb{R}/\sim is compact. (Here, we give \mathbb{R} the standard topology.)
- 5. Define an equivalence relation on $\mathbb{R}^2 \setminus \{(0,0)\}$ as follows: We say that $(x_1, x_2) \sim (x'_1, x'_2)$ if and only if there exists a non-zero real number t for which $(tx_1, tx_2) = (x'_1, x'_2)$. Then $(\mathbb{R}^2 \setminus \{(0,0)\}) / \sim$ is compact.
- 6. Define an equivalence relation on S^1 as follows: We say that $(x_1, x_2) \sim (x'_1, x'_2)$ if and only there exists a non-zero real number t for which $(tx_1, tx_2) = (tx'_1, tx'_2)$. Then S^1 / \sim is compact.