Homework 10

Due Tuesday, November 3, 11:59 PM

Proof problem

(a) State:

- (i) The definition of what it means for a topological space X to be Hausdorff.
- (ii) The definition of a metric on a set X.
- (iii) The definition of a sequence in a metric space converging to a point.
- (iv) The definition of an open ball of radius r centered at a point x in a metric space.
- (v) The definition of the metric topology on a metric space.
- (b) Let (X, d_X) and (Y, d_Y) be metric spaces. Fix a function $f : X \to Y$. Show that the following are equivalent.
 - (1) f is continuous (when giving X and Y the metric topology).
 - (2) For every $\epsilon > 0$ and for every $x \in X$, there exists a $\delta > 0$ so that

 $d_X(x, x') < \delta \implies d_Y(f(x), f(x')) < \epsilon.$

(3) For every sequence $(a_i)_{i\geq 1}$ in X converging to a, the sequence $(f(a_i))_{i\geq 1}$ in Y converges to f(a).

Canvas True/False Questions:

Indicate whether each of the following statements is true or false:

- 1. Every metric space is Hausdorff.
- 2. If X is Hausdorff, then for any equivalence relation on X, X/\sim is Hausdorff.
- 3. Euclidean space (with the standard topology) is Hausdorff.

- 4. If P is a poset, P (with the Alexandroff topology) is Hausdorff if and only if P is discrete.
- 5. If X and Y are Hausdorff, then $X \times Y$ is Hausdorff.
- 6. If at least one of X or Y is not Hausdorff, then $X \times Y$ is not Hausdorff.